Skip to main content

Parallel ADI Preconditioners for All-Scale Atmospheric Models

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9574))

Abstract

Effective preconditioning lies at the heart of multiscale flow simulation, including a broad range of geoscientific applications that rely on semi-implicit integrations of the governing PDEs. For such problems, conditioning of the resulting sparse linear operator directly responds to the squared ratio of largest and smallest spatial scales represented in the model. For thin-spherical-shell geometry of the Earth atmosphere the condition number is enormous, upon which implicit preconditioning is imperative to eliminate the stiffness resulting from relatively fine vertical resolution. Furthermore, the anisotropy due to the meridians convergence in standard latitude-longitude discretizations becomes equally detrimental as the horizontal resolution increases to capture nonhydrostatic dynamics. Herein, we discuss a class of effective preconditioners based on the parallel ADI approach. The approach has been implemented in the established high-performance all-scale model EULAG with flexible computational domain distribution, including a 3D processor array. The efficacy of the approach is demonstrated in the context of an archetypal simulation of global weather.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For comprehensive list of EULAG publications see model webpage at http://www2.mmm.ucar.edu/eulag/.

  2. 2.

    This second step can be iterated when nonlinear terms resulting from, e.g., metric forces are present; cf. [19] for illustrative examples.

  3. 3.

    MPDATA (for multidimensional positive definite advection transport algorithm) is a class of nonoscillatory forward-in-time flow solvers, widely documented in the literature; for a recent overview see [20] and references therein.

  4. 4.

    Note that \(\tilde{\tau _i}=\tau _i\) for (11)–(14) but \(\tilde{\tau _i}=\tau _i/2\) in the (15).

  5. 5.

    For the majority of geophysical applications, the main performance bottleneck is the memory bandwidth and access time, and not the main memory size. The latter is usually much larger than needed, as large number of timesteps and good scalability lead to routine use of hundreds of computing cores and tens of supercomputer nodes.

  6. 6.

    For a discussion of the differences in various soundproof and compressible solutions see [20] and references therein.

References

  1. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 742–762 (1968)

    Article  MathSciNet  Google Scholar 

  2. Douglas, J.J.: On the numerical integration of \(u_t= u_{xx}+ u_{yy}\) by implicit methods. SIAM J. 3(1), 42–65 (1955)

    Google Scholar 

  3. Dutton, J.A.: The Ceaseless Wind. McGraw-Hill, New York (1976)

    Google Scholar 

  4. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jablonowski, C., Williamson, D.L.: A baroclinic instability test case for atmospheric model dynamical cores. Q. J. Roy. Meteorol. Soc. 132(621C), 2943–2975 (2006)

    Article  Google Scholar 

  6. Lipps, F.B., Hemler, R.S.: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39(10), 2192–2210 (1982)

    Article  Google Scholar 

  7. Matejczyk, B.: Preconditioning in mathematical weather forecasts. Master’s thesis, University of Warsaw (2014)

    Google Scholar 

  8. Peaceman, D.W., Racheford, H.H.: The numerical solution of parabolic and elliptic numerical differential equations. SIAM J. 3(1), 28–41 (1955)

    MathSciNet  MATH  Google Scholar 

  9. Piotrowski, Z.P., Smolarkiewicz, P.K., Malinowski, S.P., Wyszogrodzki, A.A.: On numerical realizability of thermal convection. J. Comp. Phys. 228(17), 6268–6290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Piotrowski, Z.P., Wyszogrodzki, A.A., Smolarkiewicz, P.K.: Towards petascale simulation of atmospheric circulations with soundproof equations. Acta Geophys. 59(6), 1294–1311 (2011)

    Article  Google Scholar 

  11. Prusa, J.M., Smolarkiewicz, P.K.: An all-scale anelastic model for geophysical flows: dynamic grid deformation. J. Comput. Phys. 190(2), 601–622 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Prusa, J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.A.: EULAG, a computational model for multiscale flows. Comput. Fluids 37(9), 1193–1207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Prusa, J.M., Gutowski, W.J.: Multi-scale waves in sound-proof global simulations with EULAG. Acta Geophys. 59(6), 1135–1157 (2011)

    Article  Google Scholar 

  14. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skamarock, W.C., Smolarkiewicz, P.K., Klemp, J.B.: Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Weather Rev. 125(4), 587–599 (1997)

    Article  Google Scholar 

  16. Smolarkiewicz, P.K., Grubisic, V., Margolin, L.G.: On forward-in-time differencing for fluids: stopping criteria for iterative solutions of anelastic pressure equations. Mon. Weather Rev. 125(4), 647–654 (1997)

    Article  Google Scholar 

  17. Smolarkiewicz, P.K., Margolin, L.G., Wyszogrodzki, A.A.: A class of nonhydrostatic global models. J. Atmos. Sci. 58(4), 349–364 (2001)

    Article  Google Scholar 

  18. Smolarkiewicz, P.K., Temperton, C., Thomas, S.J., Wyszogrodzki, A.A.: Spectral preconditioners for nonhydrostatic atmospheric models: extreme applications. In: Proceedings of the ECMWF Seminar Series on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, UK, pp. 203–220 (2004)

    Google Scholar 

  19. Smolarkiewicz, P.K., Charbonneau, P.: EULAG, a computational model for multiscale flows: an MHD extension. J. Comput. Phys. 236, 608–623 (2013)

    Article  MathSciNet  Google Scholar 

  20. Smolarkiewicz, P.K., Kühnlein, C., Wedi, N.P.: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys. 263, 185–205 (2014)

    Article  MathSciNet  Google Scholar 

  21. Smolarkiewicz, P., Margolin, L.: Variational solver for elliptic problems in atmospheric flows. Appl. Math. Comp. Sci 4(4), 527–551 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Smolarkiewicz, P., Margolin, L.: Variational methods for elliptic problems in fluid models. In: Proceedings of ECMWF Workshop on Developments in Numerical Methods for Very High Resolution Global Models, pp. 137–159 (2000)

    Google Scholar 

  23. Thomas, S.J., Hacker, J.P., Smolarkiewicz, P.K., Stull, R.B.: Spectral preconditioners for nonhydrostatic atmospheric models. Mon. Weather Rev. 131(10), 2464–2478 (2003)

    Article  Google Scholar 

  24. Zhang, Y., Cohen, J., Owens, J.D.: Fast tridiagonal solvers on the GPU. ACM Sigplan Not. 45(5), 127–136 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Towards peta-scale numerical weather prediction for Europe” project realized within the “HOMING PLUS” programme of Foundation for Polish Science, co-financed from European Union, Regional Development Fund. Selected code optimizations were supported by the Polish National Science Center (NCN) under the Grant no.: 2011/03/B/ST6/03500. Piotr K. Smolarkiewicz is supported by funding received from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2012/ERC Grant agreement no. 320375). This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d25 and by the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) University of Warsaw under grant no. G49-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew P. Piotrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Piotrowski, Z.P., Matejczyk, B., Marcinkowski, L., Smolarkiewicz, P.K. (2016). Parallel ADI Preconditioners for All-Scale Atmospheric Models. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics