Skip to main content

Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9574))

Abstract

We present three variants of discretization of the stationary van Roosbroeck equations. They are the Composite Discontinuous Galerkin Methods, in standard symmetric/non-symmetric version, and the Weakly Over-Penalized Symmetric Interior Penalty method.

Numerical simulations of gallium nitride semiconductor devices are presented. Results of these simulations serve as a base to perform the convergence analysis of the presented methods. Errors of approximations obtained with these methods are compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)

    Book  Google Scholar 

  2. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    Book  MATH  Google Scholar 

  3. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  7. Sze, S., Ng, K.: Physics of Semiconductor Devices. Wiley-Interscience, Berlin (2006)

    Book  Google Scholar 

  8. Jerome, J.W.: The approximation problem for Drift-Diffusion systems. SIAM Rev. 37(4), 552–572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  10. Brenner, S.C., Owens, L., Sung, L.Y.: A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30, 107–127 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Jerome, J.W.: Analysis of Charge Transport. Springer, Berlin (1996)

    Book  Google Scholar 

  12. Jerome, J.W.: Consistency of semiconductor modeling: an existence/stability analysis for the stationary van Roosbroeck system. SIAM J. Appl. Math. 45(4), 565–590 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Girault, V., Riviere, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the stokes and Navier-Stokes problems. Math. Comput. 74(249), 53–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sakowski, K., Marcinkowski, L., Krukowski, S.: Modification of the Newton’s method for the simulations of gallium nitride semiconductor devices. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 551–560. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Sakowski, K., Marcinkowski, L., Krukowski, S., Grzanka, S., Litwin-Staszewska, E.: Simulation of trap-assisted tunneling effect on characteristics of gallium nitride diodes. J. Appl. Phys. 111(12), 123115 (2012)

    Article  Google Scholar 

  16. Polak, S.J., den Heijer, C., Schilders, W.H.A., Markowich, P.: Semiconductor device modelling from the numerical point of view. J. Numer. Methods Eng. 24, 763–838 (1987)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was funded by Polish National Science Center on the basis of the decision DEC-2011/03/D/ST3/02071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Sakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakowski, K., Marcinkowski, L., Strak, P., Kempisty, P., Krukowski, S. (2016). Discretization of the Drift-Diffusion Equations with the Composite Discontinuous Galerkin Method. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics