Skip to main content

A Highly Parallelizable Bond Fluctuation Model on the Body-Centered Cubic Lattice

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9574))

Abstract

We present a new Monte Carlo method which is based on the original Bond Fluctuation Model (scBFM) for simulating polymeric systems in three dimensions. A body centered cubic lattice is used instead of a simple cubic lattice. This modified Bond Fluctuation Model (bccBFM) fulfills the same requirements as the original scBFM, namely excluded volume and the cut-avoidance of bond vectors. Most remarkably the algorithm allows for a very efficient parallelization. This leads to a performance gain of about two orders of magnitude, when using graphics processor units (GPU). The bccBFM shows universal behavior both for static and dynamic properties and can be used to solve the same problems as the original scBFM, but provides an efficient implementation especially on GPUs.

C. Jentzsch and R. Dockhorn contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carmesin, I., Kremer, K.: The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21, 2819–2823 (1988)

    Article  Google Scholar 

  2. Deutsch, H.P., Binder, K.: Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo study. J. Chem. Phys. 94, 2294–2304 (1991)

    Article  Google Scholar 

  3. Sommer, J.-U., Lay, S.: Topological structure and nonaffine swelling of bimodal polymer networks. Macromolecules 35, 9832–9843 (2002)

    Article  Google Scholar 

  4. Werner, M., Sommer, J.-U.: Polymer-decorated tethered membranes under good- and poor-solvent conditions. Eur. Phys. J. E 31, 383–392 (2010)

    Article  Google Scholar 

  5. Di Cecca, A., Freire, J.J.: Monte Carlo simulation of star polymer systems with the bond fluctuation model. Macromolecules 35, 2851–2858 (2002)

    Article  Google Scholar 

  6. Subramanian, G., Shanbhag, S.: Conformational free energy of melts of ring-linear polymer blends. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 041806 (2009)

    Article  Google Scholar 

  7. Lang, M., Sommer, J.-U.: Analysis of entanglement length and segmental order parameter in polymer networks. Phys. Rev. Lett. 104, 177801 (2010)

    Article  Google Scholar 

  8. Nedelcu, S., Sommer, J.-U.: Single chain dynamics in polymer networks: a Monte Carlo study. J. Chem. Phys. 130, 204902 (2009)

    Article  Google Scholar 

  9. Nedelcu, S., Sommer, J.-U.: Single-chain dynamics in frozen polymer networks. Rheol. Acta 49, 485–494 (2010)

    Article  Google Scholar 

  10. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008)

    Article  MATH  Google Scholar 

  11. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. ACM Queue 6, 40–53 (2008)

    Article  Google Scholar 

  12. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans. Comput. C–21, 948–960 (1972)

    Article  MATH  Google Scholar 

  13. Trautenberg, H.L., Hölzl, T., Göritz, D.: Evidence for the absence of bond-crossing in the three-dimensional bond fluctuation model. Comput. Theor. Polym. Sci. 6, 135–141 (1996)

    Google Scholar 

  14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  15. Nedelcu, S., Werner, M., Lang, M., Sommer, J.-U.: GPU implementations of the bond fluctuation model. J. Comput. Phys. 231, 2811–2824 (2012)

    Article  MATH  Google Scholar 

  16. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  17. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon Press, Oxford (1987)

    Google Scholar 

  18. Rubinstein, M., Colby, R.: Polymer Physics. Oxford University Press, Oxford, New York (2003)

    Google Scholar 

  19. Wittkop, M., Kreitmeier, S., Göritz, D.: Swelling of subchains of a single polymer chain with excluded volume in two and three dimensions: a Monte Carlo study. Macromolecules 29, 4754–4758 (1996)

    Article  Google Scholar 

  20. Le Guillou, J.C., Zinn-Justin, J.: Critical exponents from field-theory. Phys. Rev. B 21, 3976–3998 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rouse, P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953)

    Article  Google Scholar 

  22. Kremer, K., Binder, K.: Dynamics of polymer chains confined into tubes: scaling theory and Monte Carlo simulations. J. Chem. Phys. 81, 6381–6394 (1984)

    Article  Google Scholar 

  23. Paul, W., Binder, K., Heermann, D.W., Kremer, K.: Dynamics of polymer solutions and melts. Reptation predictions and scaling of relaxation times. J. Chem. Phys. 95, 7726–7740 (1991)

    Article  Google Scholar 

  24. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990)

    Article  Google Scholar 

  25. Kirk, D.B., Hwu, W.-M.W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco (2010)

    Google Scholar 

  26. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional, Boston (2011)

    Google Scholar 

  27. Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison-Wesley Professional, Upper Saddle River, New Jersey (2013)

    Google Scholar 

  28. NVIDIA: CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/index.html

  29. NVIDIA: CUDA Best Practices Guide. https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

  30. Morton, G.M.: A Computer Oriented Geodetic Data Base; and a New Technique in File Sequencing. IBM Germany Scientific Symposium Series (1966)

    Google Scholar 

  31. Jentzsch, C., Sommer, J.-U.: Polymer brushes in explicit poor solvents studied using a new variant of the bond fluctuation model. J. Chem. Phys. 141, 104908 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) SO-277/8-1. We thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of GPU time. We thank Anne Herrmann for implementing the Trautenberg test for the bccBFM and Marco Werner for fruitful discussions (all Leibniz Institute of Polymer Research Dresden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Dockhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jentzsch, C., Dockhorn, R., Sommer, JU. (2016). A Highly Parallelizable Bond Fluctuation Model on the Body-Centered Cubic Lattice. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics