Advertisement

Parallel Differential Evolution in the PGAS Programming Model Implemented with PCJ Java Library

  • Łukasz Górski
  • Franciszek Rakowski
  • Piotr Bała
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9573)

Abstract

New ways to exploit parallelism of large scientific codes are still researched on. In this paper we present parallelization of the differential evolution algorithm. The simulations are implemented in Java programming language using PGAS programing paradigm enabled by the PCJ library. The developed solution has been used to test differential evolution on a number of mathematical function as well as to fine-tune the parameters of nematode’s C. Elegans connectome model. The results have shown that a good scalability and performance was achieved with relatively simple and easy to develop code.

Keywords

Parallel processing Differential evolution Parallel genetic algorithm PGAS Java 

Notes

Acknowledgement

This work has been performed using the PL-Grid infrastructure. Partial support from CHIST-ERA consortium is acknowledged.

References

  1. 1.
    Sutter, H.: The free lunch is over. a fundamental turn toward concurrency in software. Dr. Dobbs J. 30(3), 202–210 (2005)Google Scholar
  2. 2.
    Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution. In: IEEE Congress on Evolutionary Computation (CEC) (2004)Google Scholar
  3. 3.
    Parallel Computing in Java. Homepage: http://pcj.icm.edu.pl/. Accessed 6 November 2015
  4. 4.
    Berkeley UPC. Homepage: http://upc.lbl.gov/. Accessed 6 November 2015
  5. 5.
    Information technology - Programming languages - Fortran. ISO, Language standard ISO/IEC: 1539–1 (2010)Google Scholar
  6. 6.
    Rice University: Coarray Fortran 2.0. Homepage: http://caf.rice.edu/. Accessed 6 November 2015
  7. 7.
    Chapel Programming Language. Homepage: http://chapel.cray.com/. Accessed 6 November 2015
  8. 8.
    X10 Programming Language. http://x10-lang.org/. Accessed 6 November 2015
  9. 9.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–32 (2010)CrossRefGoogle Scholar
  10. 10.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. Wiley, New York (1966)zbMATHGoogle Scholar
  11. 11.
    Rechenberg, I.: Evolutionsstrategie - optimierung technischer systeme nach prinzipien der biologischen evolution, Ph.D. thesis (1971)Google Scholar
  12. 12.
    Schwafel, H.-P.: Numerische optimierung von computer-modellen. Ph.D. thesis (1974)Google Scholar
  13. 13.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  14. 14.
    Storn, R., Price, K.V.: Differential evolution. a simple and eficient adaptive scheme for global optimization over continuous spaces: ICSI, TR-95-012 (1995). http://icsi.berkeley.edu/storn/litera.html. Accessed 6 November 2015
  15. 15.
    Kromer, P., Platos, J., Snasel, V.: Parallel differential evolution in unified parallel C. In: IEEE Congress on Evolutionary Computation (CEC), pp. 642–649. Cancun (2013)Google Scholar
  16. 16.
    Ungar, D.: Everything you know (about parallel programming) is wrong!. IBM Research Technical report, A Wild Screed About the Future (2011)Google Scholar
  17. 17.
    Feoktisov, V.: Differential Evolution. In Search of Solutions. Springer, New York (2007)Google Scholar
  18. 18.
    Apache Commons. homepage: https://commons.apache.org/. Accessed 2 November 2015
  19. 19.
    Tušar, T., Filipič, B.: Differential evolution versus genetic algorithms in multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 257–271. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Zhou, C.: Fast parallelization of differential evolution algorithm using mapreduce. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Portland, Oregon, USA, pp. 1113–1114 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland
  2. 2.Interdisciplinary Centre for Mathematical and Computational ModellingUniversity of WarsawWarsawPoland

Personalised recommendations