Advertisement

Convolution Quadrature for Wave Simulations

  • Matthew HassellEmail author
  • Francisco-Javier Sayas
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 9)

Abstract

These notes develop the algorithmic aspects of convolution equations and their discretization by Convolution Quadrature, with an emphasis on the convolution equations that occur in the boundary integral equation formulation of wave scattering problems. The authors explore the development of CQ from a number of different perspectives. Clear algorithms for implementation of CQ are presented. A final example brings together the entire course to demonstrate the full discretization of a time domain boundary integral equation using Convolution Quadrature in time and a simple to program Nyström flavored method in space.

Keywords

Convolution Quadrature Acoustic waves Time domain boundary integral equations Overresolving in the Laplace domain for Convolution Quadrature methods 

References

  1. 1.
    Bamberger, A., Duong, T.H.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I. Math. Methods Appl. Sci. 8 (3), 405–435 (1986)zbMATHGoogle Scholar
  2. 2.
    Bamberger, A., Duong, T.H.: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Methods Appl. Sci. 8 (4), 598–608 (1986)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32 (5), 2964–2994 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Banjai, L., Lubich, C.: An error analysis of Runge-Kutta convolution quadrature. BIT 51 (3), 483–496 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47 (1), 227–249 (2008/2009)Google Scholar
  6. 6.
    Banjai, L., Schanz, M.: Wave propagation problems treated with convolution quadrature and BEM. In: Fast Boundary Element Methods in Engineering and Industrial Applications. Lecture Notes in Applied and Computational Mechanics, vol. 63, pp. 145–184. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Banjai, L., Lubich, C., Melenk, J.M.: Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119 (1), 1–20 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Banjai, L., Messner, M., Schanz, M.: Runge-Kutta convolution quadrature for the boundary element method. Comput. Methods Appl. Mech. Eng. 245/246, 90–101 (2012)Google Scholar
  9. 9.
    Banjai, L., Laliena, A.R., Sayas, F.J.: Fully discrete Kirchhoff formulas with CQ-BEM. IMA J. Numer. Anal. 35 (2), 859–884 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Betcke, T., Salles, N., Smigaj, W.: Exponentially accurate evaluation of time-stepping methods for the wave equation via convolution quadrature type schemes (2016). arXiv:1603.01761Google Scholar
  11. 11.
    Calvo, M.P., Cuesta, E., Palencia, C.: Runge-Kutta convolution quadrature methods for well-posed equations with memory. Numer. Math. 107 (4), 589–614 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992)zbMATHGoogle Scholar
  14. 14.
    Domínguez, V., Sayas, F.J.: Some properties of layer potentials and boundary integral operators for the wave equation. J. Integral Equ. Appl. 25 (2), 253–294 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Domínguez, V., Lu, S., Sayas, F.J.: A fully discrete Calderón calculus for two dimensional time harmonic waves. Int. J. Numer. Anal. Model. 11 (2), 332–345 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hackbusch, W., Kress, W., Sauter, S.A.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. SIAM J. Numer. Anal. 29 (1), 158–179 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2010)Google Scholar
  18. 18.
    Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6 (3), 532–541 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Henrici, P.: Applied and computational complex analysis, vol. 1. Wiley Classics Library. Wiley, New York (1988)zbMATHGoogle Scholar
  20. 20.
    Laliena, A.R.: Theoretical and algorithmic aspects of the convolution quadrature method applied to scattering of acoustic waves. Ph.D. thesis, Universidad de Zaragoza (2011)Google Scholar
  21. 21.
    Laliena, A.R., Sayas, F.J.: A distributional version of Kirchhoff’s formula. J. Math. Anal. Appl. 359 (1), 197–208 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Laliena, A.R., Sayas, F.J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112 (4), 637–678 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52 (2), 129–145 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52 (4), 413–425 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67 (3), 365–389 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lubich, C., Ostermann, A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comput. 60 (201), 105–131 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lubich, C., Schneider, R.: Time discretization of parabolic boundary integral equations. Numer. Math. 63 (4), 455–481 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  29. 29.
    Sayas, F.: Retarded Potentials and Time Domain Boundary Integral Equations: A Road-Map. Springer Series in Computational Mathematics, vol. 50. Springer, New York (2016). http://math.udel.edu/~fjsayas/TDBIEclassnotes2012.pdf (2013)
  30. 30.
    Sayas, F.J.: Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations. Numer. Math. 124 (1), 121–149 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schanz, M.: Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Springer, Berlin/New York (2001)CrossRefzbMATHGoogle Scholar
  32. 32.
    Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Enseignement des Sciences. Hermann, Paris (1961)zbMATHGoogle Scholar
  33. 33.
    Trèves, F.: Topological vector spaces, distributions and kernels. Academic, New York/London (1967)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations