Skip to main content

Geostatistical Methods and Applications

  • Chapter
  • First Online:
Aquifer Characterization Techniques

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Geostatistical analysis techniques are used to predict the values of parameters between data points. Geostatistical methods are only valid for spatially dependent (i.e., nonrandom) data. The basic method is to first identify and quantify the spatial structure of the variables of concern and then to interpolate or estimate the values of variables from neighboring values taking into account their spatial structure. Conditioning is the incorporation of hard or soft data into a model to reduce uncertainty. Hard data, by definition, has negligible uncertainty (e.g., direct measurements of property of interest), whereas soft data (inferred properties) have significant uncertainty. Geostatistical methods have been used to obtain realizations of sedimentary facies distributions, which typically require upscaling to a groundwater model grid, and assignment of hydraulic parameters values. A promising approach is hybrid methodologies that combine facies models and other soft geological information with geostatistical methods. Geostatistical techniques, when properly applied, are data intensive and are not a substitute for detailed field investigations and hydrogeological knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. P. (1997) Characterization of geological heterogeneity. In G. Dagan & S. P. Neuman (Eds.), Subsurface flow and transport: A stochastic approach (pp. 23–43). Cambridge: Cambridge University Press.

    Google Scholar 

  • Blouin, M., Martel, R., & Gloaguen, E. (2013) Accounting for aquifer heterogeneity from geological data to management tools. Groundwater, 51, 421–431.

    Google Scholar 

  • Carle, S. F. (1999) T-PROGS: Transition probability geostatistical software (v. 2.1). Davis, University of California, Davis.

    Google Scholar 

  • Carle, S. F., & Fogg, G. E. (1996) Modeling of spatial variability using one- and multidimensional Markov chains. Mathematical Geology, 28, 453–476.

    Google Scholar 

  • Carle, S. F., & Fogg, G. E. (1997) Transition probability-based indicator geostatistics. Mathematical Geology, 29, 891–918.

    Google Scholar 

  • Delhomme, J. P. (1979) Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach. Water Resources Research, 15(2), 269–280.

    Google Scholar 

  • Dell’Arciprete, D., Bersezio, R., Felletti, F., Giudici, M., & Vassena, C. (2010) Simulation of heterogeneities in a point-bar/channel aquifer analogue. Memorie Descriitive Carta Geologica d’Italia, 90, 85–96.

    Google Scholar 

  • Dell’Arciprete, D., Bersezio, R., Felletti, F., Giudici, M., Comunian, A., & Renard, P. (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeology Journal, 20, 299–311.

    Google Scholar 

  • Desbarats, A.J., & Bachu, S. (1994) Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale: A case study. Water Resources Research, 30, 673–684.

    Google Scholar 

  • Elfeki, A. M. M., & Dekking, F. M. (2001) A Markov chain model for subsurface characterization: theory and applications. Mathematical Geology, 33, 569–589.

    Google Scholar 

  • Elfeki, A. M. M., & Dekking, F. M. (2007) Reducing geological uncertainty by conditioning on boreholes: the couple Markov chain approach. Hydrogeology Journal, 15, 1439–1455.

    Google Scholar 

  • Felletti, F., Bersezio, R., & Giudici, M. (2006) Geostatistical simulation and numerical upscaling, to model ground-water flow in a sandy-gravel, braided river, aquifer analogue. Journal of Sedimentary Research, 76, 1215–1229.

    Google Scholar 

  • Fogg, G. E. (1989) Emergence of geological and stochastic approaches for characterization of heterogeneous aquifers. In Proceedings R.S. Kerr Environmental Research Lab (EPA) Conference on New Field Techniques for Quantifying the Physical and Chemical Properties of Heterogeneous Aquifers.

    Google Scholar 

  • Gómez-Hernández, J. J. (2006) Complexity. Ground Water, 44, 782–785.

    Google Scholar 

  • Goovaerts, P. (1997) Geostatistics for natural resources evaluation. Oxford: Oxford University Press.

    Google Scholar 

  • Henley, S. (1981) Nonparametric geostatistics. Barking, England: Elsevier.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989) An introduction to applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Johnson, N. M. (1995). Characterization of alluvial hydrostratigraphy with indicator semivariograms. Water Resources Research, 31(12), 3217–3227.

    Google Scholar 

  • Johnson, N. M., & Dreiss, S. J. (1989) Hydrostratigraphic interpretation using indicaor geostatistics. Water Resources Research, 15, 2501–2510.

    Google Scholar 

  • Jones, N . L., Walker, J. R., & Carle, S. F., 2005, Hydrogeologic unit flow characterization using transition probability geostatistics. Ground Water, 43, 285–289.

    Google Scholar 

  • Journel, A. G. (1986). Constrained interpolation and qualitative information—the soft kriging approach. Mathematical Geology, 18(3), 269–286.

    Google Scholar 

  • Kaluzny, S. P., Vega, S. C., Cardoso, T. P., & Shelly, A. A. (1998) S + SpatialStats: User’s Manual for Windows® and UNIX®. New York: Springer.

    Google Scholar 

  • Kessler, T. C., Comunian, A., Orani, F., Renard, P., Nilsson, B., Klint, K. E., & Berg, P. L. (2013) Modeling fine-scale geological heterogeneity – examples of sand lenses in tills. Groundwater, 51, 692–705.

    Google Scholar 

  • Kitanidis, P. K (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Knight, R., Tercier, P., & Jol, H. (1997) The role of ground penetrating radar and geostatistics in reservoir description. The Leading Edge, 16(11), 1576–1582.

    Google Scholar 

  • McKenna, S. A., & Poeter, E. P. (1995) Field example of data fusion is site characterization. Water Resources Research, 31, 3229–3240.

    Google Scholar 

  • Olea, R. A. (2009) A practical primer on geostatistics. U.S. Geological Survey Open-File Report 2009-1103.

    Google Scholar 

  • Ouellon, T., Lefebvre, R., Marcotte, D., Boutin, A., Blais, V., & Parent, M. (2008) Hydraulic conductivity heterogeneity of a local deltain aquifer system from the kriged 3D distribution of hydrofacies from borehole logs, Valcartier, Canada. Journal of Hydrology, 351, 71–86.

    Google Scholar 

  • Phillips, F. M., & Wilson, J. L. (1989) An approach to estimating hydraulic conductivity spatial correlation scales using geological characteristics. Water Resources Research, 25, 141–143.

    Google Scholar 

  • Phillips S. P., Green, C. T., Burow, K. R., Shelton, J. L., & Rewis, D. L. (2007) Simulation of multiscale ground-water flow in part of the northeastern San Joaquin Valley, California. U.S. Geological Survey Scientific Investigations Report 2007–5009.

    Google Scholar 

  • Poeter, E. P., & Townsend, P. (1994) Assessment of critical flow path for improved remediation management. Ground Water, 32, 439–447.

    Google Scholar 

  • Poeter, E. P., Wingle, W. S., & McKenna, S. A. (1997) Improvising groundwater project analysis with geophysical data. The Leading Edge, 16(11), 1675–1681.

    Google Scholar 

  • Proce, C. J., Ritzi, R. W., Dominic, D. F., & Dai, X. (2004) Modeling multiscale heterogeneity and aquifer interconnectivity. Ground Water, 42, 658–670.

    Google Scholar 

  • Quental, P., Almeida, J. A., & Simões, M. (2012) Construction of high-resolution stochastic geological models and optimal upscaling to a simplified layer-type hydrogeological model. Advances in Water Resources, 39, 18–32.

    Google Scholar 

  • Ritzi R. W., Jr., Dominic, D. F., Brown, N. R., Kausch, K. W., McAlenney, P. J., & Basial, M. J. (1995) Hydrofacies distribution and correlation in the Miami Valley aquifer system. Water Resources Research, 31, 3271–3281.

    Google Scholar 

  • Ritzi, R. W., Jr., Jayne, D. F., Zahradnik, A. J., Jr., Field, A. A., & Fogg, G. E. (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried valley aquifers. Ground Water, 32, 666–674.

    Google Scholar 

  • Rubin, Y. (2003) Applied stochastic hydrogeology. New York: Oxford University Press.

    Google Scholar 

  • Rubin, Y., Lunt, A. I., & Bridge, J. S. (2006) Spatial variability in river sediments and its link with river channel geometry. Water Resources Research, 42, W06D16.

    Google Scholar 

  • Sakaki, T., Frippiat, C. C., Komatsu, M., & Illangasekare, T. H. (2009) On the value of lithofacies data for improving groundwater flow model accuracy in a three-dimensional laboratory-scale synthetic aquifer. Water Resources Research, 45, W11404.

    Google Scholar 

  • Scheib, T. D., & Chen, Y.-J. (2003) An evaluation of conditioning data for solute transport prediction. Ground Water, 41(2), 128–141.

    Google Scholar 

  • Sun, A. Y., Ritzi, R. W., & Sims, D. W. (2008) Characterization and modeling of spatial variability in a complex alluvial aquifer: implications on solute transport. Water Resources Research, 44, W04402.

    Google Scholar 

  • Traum, J. A., Phillips, S. P., Bennett, G. L., Zamora, C., & Metzger, L. F. (2014) Documentation of a groundwater flow model (SJRRPGW) for the San Joaquin River Restoration Program study area, California. U.S. Geological Survey Scientific Investigations Report 2014–5148.

    Google Scholar 

  • Webb, E. K., & Davis, M. (1998) Simulation of the spatial heterogeneity of geologic properties: An overview. In G. S. Fraser & J. M. Davis (Eds.) Hydrogeologic models of sedimentary aquifers. Concepts in Hydrogeology and Environmental Geology No. 1 (pp. 1–24). Tulsa: SEPM.

    Google Scholar 

  • Weissmann, G. S., Carle, S. F., & Fogg, G. E. (1999) Three-dimensional hydrofacies modeling based on soil survey and transition probability geostatistics. Water Resources Research, 35(6), 1761–1770.

    Google Scholar 

  • Weissman, G. S., & Fogg, G. E. (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. Journal of Hydrology, 226, 48–65.

    Google Scholar 

  • Weissmann, G. S., Yong, Z., Fogg, G. E., Blake, R. G., Noyes, C. D., & Maley, M. (2002) Modeling alluvial fan aquifer heterogeneity in multiple scales through stratigraphic assessment In Proceedings of the International Groundwater Symposium: Bridging the gap between measurement and modeling in heterogeneous media (pp. 25–28). Berkley, California: Lawrence Berkeley National Laboratory.

    Google Scholar 

  • Ye, M., & Khaleel, R. (2008) A Markov chain model for characterizing medium heterogeneity and sediment layering structure. Water Resources Research, 44, W09427.

    Google Scholar 

  • Yeh, T.-C., J. (1992) Stochastic modeling of groundwater flow and solute-transport in aquifers. Hydrological Processes, 6, 369–395.

    Google Scholar 

  • Zhu, H., & Journel, A. G. (1993) Formatting and integrating soft data: Stochastic imaging via the Markov-Bayes algorithim. In A. Soares (Ed.) Geostatistics Troia ’92, Quantitative geology and geophysics (pp. 1–12). Norwell, Mass: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maliva, R.G. (2016). Geostatistical Methods and Applications. In: Aquifer Characterization Techniques. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-32137-0_20

Download citation

Publish with us

Policies and ethics