Skip to main content

Hydraulic Conductivity Estimation and Upscaling

  • Chapter
  • First Online:
Aquifer Characterization Techniques

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 2452 Accesses

Abstract

Hydraulic conductivity is directly measured using Darcy’s law-based methods that induce flow through a formation or sample. Indirect measures predict hydraulic conductivity from other sediment or rock properties. Methods are reviewed for obtaining profiles of permeability (hydraulic conductivity) from borehole geophysical logs, which include use of core porosity- versus-permeability transforms, porosity pore-size-permeability relationships, multivariate methods using multiple logs, and artificial neural networks. Obtaining hydraulic conductivity from geophysical logs is more complex for carbonates because of the presence of multiple pore types and the often dominance of flow by secondary porosity. Model grid cells are often one or more orders of magnitude greater than the volume of investigation of geophysical logs and other small-scale aquifer characterization methods. Upscaling is the process of assigning single equivalent values for each aquifer parameters (e.g., hydraulic conductivity) in model grid cells that results in the same modeled flow and solute transport as the original finer-scale heterogeneous values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, U., Crary, S. F., & Coates, G. R. (1991) Permeability estimation: The various sources and their limitations. Journal of Petroleum Technology (JPT), May 1991, 578–587.

    Google Scholar 

  • Ahr, W. M., Allen, D., Boyd, A., Bachman, H. N., Smithson, T., Clerke, E. A., Gzara, K. B. M., Hassall, J. K., Murty, C. R. K., Zubari, H., & Ramamoorthy, R. (2005) Confronting the carbonate conundrum. Oilfield Review, 17(1), pp. 18–29.

    Google Scholar 

  • Allen, D., Flaum, C., Ramakrishnan, T. S., Bedford, J., Castelijns, K., Fairhursts, D., Gubelin, G., Heaton, N., Minh, C. C., Norville, M. A., Seim, M. R., Pritchard, T., & Ramamoorthy, R. (2000) Trends in NMR logging. Oilfield Review, 12(3), 2–19.

    Google Scholar 

  • Ali, M., Chawathé, A., Ouenes, A., Cather, M., & Weiss, W. (1999) Extracting maximum petrophysical and geological information from a limited reservoir database. In R. Schatzinger and J. Jordan (Ed.), Reservoir characterizationRecent advances. Memoir 1. (pp. 191–208). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993) Enhanced reservoirs description: Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In SPE Annual Technical Conference and Exhibition (pp. 205–220). Society of Petroleum Engineers (SPE Publication 26436).

    Google Scholar 

  • Anderson, M. P. (1997) Characteriztion of geological heterogeneity. In G. Dagan and S. P. Neuman (Eds.) Subsurface flow and transport: A Stochastic Approach (pp. 23–43). Cambridge: Cambridge University Press.

    Google Scholar 

  • Archie, G. E. (1950) Introduction to petrophysics of reservoir rocks. American Association of Petroleum Geologists Bulletin, 34, 943–961.

    Google Scholar 

  • Ayan, C., Haq, S. A., Boyd, A., El-Hamawi, H. H., & Hafez, A. D. C. O. (1999) Integration of NMR, wireline tester, core and open hole log data for dynamic reservoir properties. In Middle East Oil Show and Conference. Society of Petroleum Engineers (SPE Publication 53272).

    Google Scholar 

  • Balan, B., Mohaghegh, S., & Ameri, S., 1995, State-of-the-art in permeability from well log data: Part 1- A comparative study, model development: Society of Petroleum Engineers Eastern Regional Conference & Exhibition (SPE Paper 30978).

    Google Scholar 

  • Barson, D., Christensen, R., Decoster, E., Grau, J., Herron, M., Herron, S., & Guru, U. K. (2005). Spectroscopy: the key to rapid, reliable petrophysical answers. Oilfield Rev, 17(2), 14–33.

    Google Scholar 

  • Bear, J. (1972) Dynamics of fluids in porous media. New York: Elsevier.

    Google Scholar 

  • Bianchi, M., Zheng, C., Wilson, C., Tick, G. R., Liu, G., & Gorelick, S. M. (2011) Spatial connectivity in a highly heterogenous aquifer: From core to preferential flow paths. Water Resources Research, 47, W-5524.

    Google Scholar 

  • Bridge, J. S. (2001) Characterization of fluvial hydrocarbon reservoirs and aquifers: problems and solutions: AAS [Asociación Argentina de Sedimentología], 8(2), 87–114.

    Google Scholar 

  • Chang, D., Vinegar, H., Morriss, C., & Straley, C. (1997) Effective porosity, producible fluid, and permeability in carbonates from NMR logging. The Log Analyst, March-April 1997, 60–72.

    Google Scholar 

  • Coates, G. R., Peveraro, R. C. A., Hardwick, A., & Roberts, D. (1991) The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data. In. Proceedings of the 66 th Annual Technical Conference and Exhibition, Formation Evaluation and Reservoir Geology (pp. 627–635). SPE paper 22723.

    Google Scholar 

  • Delhomme, J. P. (2007) The quest for permeability evaluation in wireline logging. In L. Chery and G. de Marsily (Eds.), Aquifer systems management: Darcy’s legacy in a world of impending water shortage (pp. 55–70). London: Taylor & Francis.

    Google Scholar 

  • de Marsily, G., Delay, F., Goncalvès, J., Renard, Ph., Teles, V., & Violette, S. (2005) Dealing with spatial heterogeneity. Hydrogeology Journal, 13, 161–183.

    Google Scholar 

  • Desbarats, A. J. (1992) Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media. Mathematical Geology, 24, 249–267.

    Google Scholar 

  • Desbarats, A. J., & Bachu, S. (1994) Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale: A case study. Water Resources Research, 30, 673–684.

    Google Scholar 

  • Dorfman, M. H., Newey, J.-J., & Coates, G. R. (1990) New techniques in lithofacies determination and permeamability prediction in carbonates using well logs. In A. Hurst, M. A. Lovell and A. C. Morton (Eds.), Geological applications of wireline logs. Special Publication 48 (pp. 113–120). London: Geological Society.

    Google Scholar 

  • Dunham, R. J. (1962) Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks. Memoir 1 (pp. 108–121). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Dykaar, B. B., & Kitanidis, P. K. (1993) Transmissivity of a heterogeneous formation. Water Resources Research, 29, 985–1001.

    Google Scholar 

  • Fleckenstein, J. H., & Fogg, G. E. (2008) Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers. Hydrogeology Journal, 16, 1239–1250.

    Google Scholar 

  • Fogg, G. E. (1986) Groundwater flow and sand body interconnectedness in a thick multiple-aquifer system. Water Resources Research, 22, 679–694.

    Google Scholar 

  • Genty, C., Jensen, J. L., & Ahr, W. M. (2007) Distinguishing carbonate reservoir pore facies with magnetic resonance measurements. Natural Resources Research, 16, 45–54.

    Google Scholar 

  • Glover, P. W. J., Zadjali, I. I., & Frew, K. A. (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics, 71(4), F49–F60.

    Google Scholar 

  • Hassal, J. K., Ferraris, P., Al-Raisi, M., Hurley, N. F., Boyd, A., & Allen, D. F. (2004) Comparison of permeability predictors from, NMR, formation image and other logs in a carbonate reservoir. In In Abu Dhabi International Conference and Exhibition. Society of Petroleum Engineers (SPE publication 88683).

    Google Scholar 

  • Helle, H. B., Bhatt, A., & Ursin, B. (2001) Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophysical Prospecting, 49, 431–4444.

    Google Scholar 

  • Herron, M. M. (1987). Estimating the intrinsic permeability of clastic sediments from geochemical data. In SPWLA 28th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts.

    Google Scholar 

  • Huang, Z., Shimeld, J., Williamson, M., & Katsube, J. (1996) Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada: Geophysics, 61, 422–436.

    Google Scholar 

  • Jorgensen, D. G. (1991) Estimating geohydrologic properties from borehole-geophysical logs. Groundwater Monitoring & Remediation, 11(3), 123–129.

    Google Scholar 

  • Kennedy, M. C. (2002) Solutions to some problems in the analyses of wells in carbonate rocks. In M. Lovell & N. Parkinson (Eds.), Geological application of well logs. Memoirs in Exploration 13 (pp. 61–73).Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Khalil, M. A., & Santos, F. A. M. (2013) Hydraulic conductivity estimation from resistivity logs: a case study in Nubian sandstone aquifer. Arab Journal of Geosciences, 6, 205–212.

    Google Scholar 

  • Lucia, F. J. (1983) Petrophysical parameters estimated from visual descriptions of carbonate rocks: A field classification of carbonate pore space. Journal of Petroleum Technology, 35, 629–637.

    Google Scholar 

  • Lucia, F. J. (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. American Association Petroleum Geologists Bulletin, 79, 1275–1300.

    Google Scholar 

  • Maxwell, R. M., Carle, S. F., & Tompson, A. F. B. (2008) Contamination, risk, and heterogeneity: on the effectiveness of aquifer remediation. Environmental Geology, 54, 1771–1786.

    Google Scholar 

  • McFarlane, P. A., Doveton, J. H., Feldman, H. R., Buttler, J.J., Jr., Combes, J. M, & Collins, D. R. (1994) Aquifer/aquitard units of the Dakota Aquifer Systems in Kansas: Methods of delineation and sedimentary architecture effects on ground-water flow properties. Journal of Sedimentary Research, B64(4), 464–480.

    Google Scholar 

  • Mohaghegh, S., Balan, B., & Ameri, S. (1997) Permeability determination from well log data. SPE Formation Evaluation, September 1997, 170–174.

    Google Scholar 

  • Nelson, P. H. (1994) Permeability-porosity relationships in sedimentary rocks. The Log Analyst, 35(3), 38–62.

    Google Scholar 

  • Paillet, F. L., & Crowder, R. E. (1996) A generalized approach for the interpretation of geophysical well logs in ground water studies - Theory and application. Ground Water, 34, 883–898.

    Google Scholar 

  • Pryor, W. A. (1973). Permeability-porosity patterns and variations in some Holocene sand bodies. American Association Petroleum Geologists Bulletin, 57(1), 162–189.

    Google Scholar 

  • Quental, P., Almeida, J. A., & Simões, M. (2012) Construction of high-resolution stochastic geological models and optimal upscaling to a simplified layer-type hydrogeological model. Advances in Water Resources, 39 18–32.

    Google Scholar 

  • Reilly, T. E., & Harbaugh, A. W. (2004) Guidelines for evaluating ground-water flow models. U.S Geological Survey Scientific Investigations Report 2004–5038.

    Google Scholar 

  • Renard, P., & de Marsily, G. (1997) Calculating equivalent permeability: a review. Advances in Water Resources, 20(5–6), 253–278.

    Google Scholar 

  • Ritzi, R. W., Jr., Jayne, D. F., Zahradnik, A. J., Jr., Field, A. A., & Fogg, G. E. (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried valley aquifers. Ground Water, 32(4), 666–674.

    Google Scholar 

  • Schatzinger, R. A., & Tomutsa, L. (1999). Multiscale heterogeneity characterization of tidal channel, tidal delta, and foreshore facies, Almond Formation outcrops, Rock Springs Uplift, Wyoming. In R. A Schatzinger and J. F. Jordan (Eds.), Reservoir characterization - Recent advances. Memoir 7. (pp. 45–56). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Timur, A. (1968) An investigation of permeability, porosity and residual water saturation relationships for sandstone reservoirs. The Log Analyst, 9(4), 8–17.

    Google Scholar 

  • Waxman, M. H., & Smits, L. J. M. (1968) Electrical conductivities in oil bearing sands. Journal of the Society of Petroleum Engineers, 8, 107–122.

    Google Scholar 

  • Webb, E. K., & Anderson, M. P. (1996). Simulation of Preferential Flow in Three‐Dimensional, Heterogeneous Conductivity Fields with Realistic Internal Architecture. Water Resources Research, 32(3), 533–545.

    Google Scholar 

  • Wendt, W. A., Sakurai, S., & Nelson, P. H. (1986) Permeability prediction from well logs using multiple regression. In L. W. Lake & H. B. Carroll, Jr. (Eds.) Reservoir characterization (pp. 181–221). Orlando: Academic Press.

    Google Scholar 

  • Westphal, H., Surholt, I., Kiesl, C., Thern, H. F., & Kruspe, T. (2005) NMR measurements in carbonate rocks: Problems and an approach to a solution. Pure and Applied Geophysics, 162, 549–570.

    Google Scholar 

  • Yeh. T.-C. J. (1998) Scale issues of heterogeneity on vadose-zone hydrology. In G. Sposito (Ed.), Scale dependence and scale invariance in hydrology (pp. 167–189). Cambridge: Cambridge University Press.

    Google Scholar 

  • Yao, C. Y., & Holditch, S. A. (1993) Estimating permeability profiles using core and log data. In Proceedings 1993 SPE Eastern Regional Conference & Exhibition, Pittsburgh, 2–4, November, 1993 (pp. 317–322), Society of Petroleum Engineers (SPE publication 26921).

    Google Scholar 

  • Zhang, Y., & Salisch, H. A. (1998) Evaluation of permeability from geophysical logs in the Barrow Field, Western Australia. First Break, 16(7), 243–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maliva, R.G. (2016). Hydraulic Conductivity Estimation and Upscaling. In: Aquifer Characterization Techniques. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-32137-0_16

Download citation

Publish with us

Policies and ethics