Skip to main content

Bone Development in Children and Adolescents

  • Chapter
  • First Online:
Puberty
  • 1915 Accesses

Abstract

Bone is a living tissue. Childhood and puberty are characterized by rapid bone growth. The growth plate consists of spatially and temporarily distinct cell types and is the place of many biological processes. A variety of factors are modulating the events in the growth plate: some of them are local, such as bone morphogenetic proteins, transforming growth factor-beta, and others, while others are systemic and hormonal, e.g., growth hormones, estrogens, and androgens. The exact molecular mechanisms underlying the growth processes and the maturation of the growth plate are being debated. All three main bone cell types—osteoblasts, osteoclasts, and osteocytes— are implicated in bone growth. They are all together the driving force for bone modeling. Bone mineral accrual during growth can be assessed by two- and three-dimensional measurement techniques. Many factors are entangled in the regulation of bone formation and apposition. Among them are lifestyle factors (nutrition, physical activity), biological factors (pubertal stage, heredity), as well as hormonal and paracrine factors (estrogens/androgens, RANK ligand/osteoprotegerin, osteosclerostin, vitamin D, and others). The contribution of individual factors cannot be easily discerned from the whole picture. The pubertal growth spurt is an event typical for humans, which cannot be fully reproduced in animal models. Bone age is a method for the assessment of bone development. It can be very useful in cases of delayed or precocious puberty, as well as in a number of bone diseases. In conclusion, bone development before and during puberty is a very complex process, which opens a wide field for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonjour J-P, Chevalley T, Ferrari S, Rizzoli R. Bone and its characteristics during childhood and adolescence up to peak bone mass. In: Roux C, editor. The living skeleton. Wolters Kluwer Health/Les Laboratories Servier; Rueuil Malmaison, 2007. pp. 1–26.

    Google Scholar 

  2. Maes C, Kronenberg HM. Bone development and remodeling. In: Potts JT Jr, volume editor, Endocrinology: adult and pediatric. 6th ed. The parathyroid gland and bone metabolism. Philadelphia: Elsevier Saunders; 2013. pp. e72–e96.

    Google Scholar 

  3. Provot S, Schipani E, Wu JY, Kronenberg H. Development of the skeleton. In: Marcus R, Feldman D, Dempster DW, Lucky M, Cauley JA, editors. Osteoporosis. 4th ed. Elsevier/Academic Press; Oxford, 2013. pp. 97–126.

    Google Scholar 

  4. Rauch F. The dynamics of bone structure development during pubertal growth. J Musculoskeletal Neuronal Interact. 2012;12(1):1–6.

    CAS  Google Scholar 

  5. Emons J, Chagin AS, Sävendahl L, Karperien M, Wit JM. Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatr. 2011;75(6):383–91.

    Article  CAS  PubMed  Google Scholar 

  6. Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006;133(23):4667–78.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002;16(7):859–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hung IH, Yu K, Lavine KJ, Ornitz DM. FGF-9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol. 2007;307(2):300–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pannier S, Mugniery E, Jonqoy A, Benoist-Lasselin C, Odent T, Jais JP, et al. Delayed bone age due to a dual effect of FGFR3 mutation in achondroplasia. Bone. 2010;47(5):905–15.

    Article  CAS  PubMed  Google Scholar 

  10. Toydemir RM, Brassington AE, Barak-Toydemir P, Krakowiak PA, Jorde LB, Whitby FG, et al. A novel mutation in FGFR3 causes camptodactyly, tall stature and hearing loss (CATSHL) syndrome. Am J Hum Genet. 2006;79(5):935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Day TF, Day BS, Yang Y. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am. 2008;90 Suppl 1:19–24.

    Article  PubMed  Google Scholar 

  12. Emons J, Chagin AS, Malmlöf T, Lekman M, Tivesten A, Ohlsson C, et al. Expression of vascular endothelial growth factor in the growth plate is stimulated by estradiol and increases during pubertal development. J Endocrinol. 2010;205(1):61–8. doi:10.1677/JOE-09-0337.

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi T, Chung UI, Schipani E, Starbuck M, Karsenty G, Katagiri T, et al. PTHrp and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development. 2002;129(12):2977–86.

    CAS  PubMed  Google Scholar 

  14. Hellemans J, Coucke PJ, Giedion A, De Paepe A, Kramer P, Beemer F, et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am J Hum Genet. 2003;72(4):1040–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Risom L, Christoffersen L, Daugaard-Jensen J, Hove HD, Andersen HS, Andresen BS, et al. Identification of six novel PTH1R mutations in families with a history of primary failure of tooth eruption. PLoS One. 2013;8(9), e74601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bastepe M, Raas-Rothschild A, Silver J, Weissman I, Wientroub S, Jüppner H, et al. A form of Jansen’s metaphyseal chondrodysplasia with limited metabolic and skeletal abnormalities is caused by a novel activating parathyroid hormone (PTH)/PTH-related peptide receptor mutation. J Clin Endocrinol Metab. 2004;89(7):3595–600.

    Article  CAS  PubMed  Google Scholar 

  17. Idelevich A, Kerschnitzki M, Shahar R, Monsonego-Ornan E. 1,25(OH)2D3 alters growth plate maturation and bone architecture in young rats with normal renal function. PLoS One. 2011;6(6), e20772. doi:10.1371/journal.pone.0020772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics. 2013;14:547. doi:10.1186/1471-2164-14-547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Börjesson AE, Windahl SH, Karimian E, Eriksson EE, Lagerquist MK, Engdahl C, et al. The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice. Am J Physiol Endocrinol Metab. 2012;302(11):E1381–9. doi:10.1152/ajpendo.00646.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Börjesson AE, Lagerquist MK, Windahl SH, Ohlsson C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell Mol Life Sci. 2013;70(21):4023–37. doi:10.1007/s00018-013-1317-1.

    Article  PubMed  CAS  Google Scholar 

  21. Börjesson AE, Lagerquist MK, Liu C, Shao R, Windahl SH, Karlsson C, et al. The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J Bone Miner Res. 2010;25(12):2690–700. doi:10.1002/jbmr.156.

    Article  PubMed  CAS  Google Scholar 

  22. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C. Androgens and bone. Endocr Rev. 2004;25(3):389–425.

    Article  CAS  PubMed  Google Scholar 

  23. De Oliveira DH, Fighera TM, Bianchet LC, Kulak CA, Kulak J. Androgens and bone. Minerva Endocrinol. 2012;37(4):305–14.

    PubMed  Google Scholar 

  24. Emons J, Chagin AS, Hultenby K, Zhivotovsky B, Wit JM, Karperien M, et al. Epiphyseal fusion in the human growth plate does not involve classical apoptosis. Pediatr Res. 2009;66(6):654–9. doi:10.1203/PDR.0b013e3181beaa8c.

    Article  PubMed  Google Scholar 

  25. De la Rica L, Rodríguez-Ubreva J, García M, Islam AB, Urquiza JM, Hernando H, et al. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol. 2013;14(9):R99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kwon OH, Lee CK, Lee YI, Paik SG, Lee HJ. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochem Biophys Res Commun. 2005;335(2):437–46.

    Article  CAS  PubMed  Google Scholar 

  27. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6(6):pii: a021857. doi:10.1101/cshperspect.a021857.

    Article  CAS  Google Scholar 

  28. Leibbrandt A, Penninger JM. RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol. 2009;647:130–45.

    Article  CAS  PubMed  Google Scholar 

  29. Schneeweis LA, Willard D, Milla ME. Functional dissection of osteoprotegerin and its interaction with receptor activator of NF-κB ligand. J Adv Exp Med Biol. 2009;647:130–45. doi:10.1007/978-0-387-89520-8_9.

    Article  Google Scholar 

  30. Zhao H, Liu X, Zou H, Dai N, Yao L, Gao Q, et al. Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways. Cytokine. 2015;71(2):199–206. doi:10.1016/j.cyto.2014.10.007.

    Article  CAS  PubMed  Google Scholar 

  31. Souza PP, Lerner UH. The role of cytokines in inflammatory bone loss. Immunol Invest. 2013;42(7):555–622. doi:10.3109/08820139.2013.822766.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Qin QH, Kalyanasundaram S. A theoretical model for simulating effect of parathyroid hormone on bone metabolism at cellular level. Mol Cell Biomech. 2009;6(2):101–12.

    PubMed  Google Scholar 

  33. Takahashi N, Udagawa N, Suda T. Vitamin D endocrine system and osteoclasts. Bonekey Rep. 2014;3:495. doi:10.1038/bonekey.2013.229.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys. 2014;561:22–8. doi:10.1016/j.abb.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  35. Luis Neyro J, Jesús Cancelo M, Palacios S. Inhibition of RANK-L in the pathophysiology of osteoporosis. Clinical evidences of its use. Ginecol Obstet Mex. 2013;81(3):146–57.

    PubMed  Google Scholar 

  36. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–15. doi:10.1016/j.bone.2007.12.224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galli C, Passeri G, Macaluso GM. Osteocytes and WNT: the mechanical control of bone formation. J Dent Res. 2010;89(4):331–43. doi:10.1177/0022034510363963.

    Article  CAS  PubMed  Google Scholar 

  38. Kubota T, Michigami T, Ozono K. Wnt signaling in bone. Clin Pediatr Endocrinol. 2010;19(3):49–56. doi:10.1297/cpe.19.49.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92. doi:10.1038/nm.3074.

    Article  CAS  PubMed  Google Scholar 

  40. Yavropoulou MP, Xygonakis C, Lolou M, Karadimou F, Yovos JG. The sclerostin story: from human genetics to the development of novel anabolic treatment for osteoporosis. Hormones (Athens). 2014;13(4):323–37. doi:10.14310/horm.2002.1552.

    Google Scholar 

  41. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(3):219–33.

    Article  CAS  PubMed  Google Scholar 

  42. Briot K, Kolta S, Fechtenbaum J, Said-Nahal R, Benhamou CL, Roux C. Increase in vertebral body size in postmenopausal women with osteoporosis. Bone. 2010;47(2):229–34. doi:10.1016/j.bone.2010.03.020.

    Article  CAS  PubMed  Google Scholar 

  43. Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481. doi:10.1038/bonekey.2013.215.

    PubMed  PubMed Central  Google Scholar 

  44. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–45. doi:10.1146/annurev-pathol-011110-130203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duan Y, Beck TJ, Wang X-F, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18(10):1766–74.

    Article  PubMed  Google Scholar 

  46. Boyanov M, Popivanov P, Gentchev G. Assessment of forearm volumetric bone mineral density from standard areal densitometry data. J Clin Densitom. 2002;5(4):391–402.

    Article  PubMed  Google Scholar 

  47. Boyanov M, Popivanov P, Roux C. Separate assessment of forearm cortical and trabecular bone density from standard densitometry data. Ann Med. 2001;33(7):497–506.

    Article  CAS  PubMed  Google Scholar 

  48. Ausili E, Rigante D, Salvaggio E, Focarelli B, Rendeli C, Ansuini V, et al. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity. Rheumatol Int. 2012;32(9):2737–43. doi:10.1007/s00296-011-2059-8.

    Article  PubMed  Google Scholar 

  49. Weaver CM, McCabe LD, McCabe GP, Novotny R, Van Loan M, Going S, et al. Bone mineral and predictors of bone mass in white, Hispanic, and Asian early pubertal girls. Calcif Tissue Int. 2007;81(5):352–63.

    Article  CAS  PubMed  Google Scholar 

  50. Gracia-Marco L, Vicente-Rodríguez G, Valtueña J, Rey-López JP, Díaz Martínez AE, Mesana MI, et al. Bone mass and bone metabolism markers during adolescence: the HELENA Study. Horm Res Paediatr. 2010;74(5):339–50. doi:10.1159/000314965.

    Article  CAS  PubMed  Google Scholar 

  51. Magarey AM, Boulton TJ, Chatterton BE, Schultz C, Nordin BE, Cockington RA. Bone growth from 11 to 17 years: relationship to growth, gender and changes with pubertal status including timing of menarche. Acta Paediatr. 1999;88(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  52. Leonard MB, Elmi A, Mostoufi-Moab S, Shults J, Burnham JM, Thayu M, et al. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J Clin Endocrinol Metab. 2010;95(4):1681–9. doi:10.1210/jc.2009-1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nishiyama KK, Macdonald HM, Moore SA, Fung T, Boyd SK, McKay HA. Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J Bone Miner Res. 2012;27(2):273–82. doi:10.1002/jbmr.552.

    Article  PubMed  Google Scholar 

  54. Xu L, Nicholson P, Wang Q, Alén M, Cheng S. Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res. 2009;24(10):1693–8. doi:10.1359/jbmr.090405.

    Article  PubMed  Google Scholar 

  55. Naganathan V, Sambrook P. Gender differences in volumetric bone mineral density: a study of opposite-sex twins. Osteoporos Int. 2003;14(7):564–9.

    Article  PubMed  Google Scholar 

  56. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  57. Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA. 1992;268(17):2403–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen TV, Maynard LM, Towne B, Roche AF, Wisemandle W, Li J. Sex differences in bone mass acquisition during growth. The Fels longitudinal study. J Clin Densitom. 2001;4(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  59. Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15(4):263–73.

    Article  PubMed  Google Scholar 

  60. Ivuskans A, Lätt E, Mäestu J, Saar M, Purge P, Maasalu K, et al. Bone mineral density in 11–13-year-old boys: relative importance of the weight status and body composition factors. Rheumatol Int. 2013;33(7):1681–7. doi:10.1007/s00296-012-2612-0.

    Article  PubMed  Google Scholar 

  61. Csakvary V, Erhardt E, Vargha P, Oroszlan G, Bodecs T, Torok D, et al. Association of lean and fat body mass, bone biomarkers and gonadal steroids with bone mass during pre- and midpuberty. Horm Res Paediatr. 2012;78(4):203–11. doi:10.1159/000342335.

    Article  CAS  PubMed  Google Scholar 

  62. Sayers A, Tobias JH. Fat mass exerts a greater effect on cortical bone mass in girls than boys. J Clin Endocrinol Metab. 2010;95(2):699–706. doi:10.1210/jc.2009-1907.

    Article  CAS  PubMed  Google Scholar 

  63. Boyanov M. Body fat, lean mass and bone density of the spine and forearm in women. Cent Eur J Med. 2014;9(1):121–5. doi:10.2478/s11536-013-0259-1.

    Google Scholar 

  64. Francis SL, Letuchy EM, Levy SM, Janz KF. Sustained effects of physical activity on bone health: Iowa Bone Development Study. Bone. 2014;63:95–100. doi:10.1016/j.bone.2014.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vaitkeviciute D, Lätt E, Mäestu J, Jürimäe T, Saar M, Purge P, Maasalu K, Jürimäe J. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: a longitudinal study. PLoS One. 2014;9(10), e107759. doi:10.1371/journal.pone.0107759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ivuškāns A, Mäestu J, Jürimäe T, Lätt E, Purge P, Saar M. Sedentary time has a negative influence on bone mineral parameters in peripubertal boys: a 1-year prospective study. J Bone Miner Metab. 2015;33(1):85–92. doi:10.1007/s00774-013-0556-4.

    Article  PubMed  Google Scholar 

  67. Ubago-Guisado E, Gómez-Cabello A, Sánchez-Sánchez J, García-Unanue J, Gallardo L. Influence of different sports on bone mass in growing girls. J Sports Sci. 2015;21:1–9.

    Google Scholar 

  68. Nogueira RC, Weeks BK, Beck BR. Exercise to improve pediatric bone and fat: a systematic review and meta-analysis. Med Sci Sports Exerc. 2014;46(3):610–21. doi:10.1249/MSS.0b013e3182a6ab0d.

    Article  PubMed  Google Scholar 

  69. Ishikawa S, Kim Y, Kang M, Morgan DW. Effects of weight-bearing exercise on bone health in girls: a meta-analysis. Sports Med. 2013;43(9):875–92. doi:10.1007/s40279-013-0060-y.

    Article  PubMed  Google Scholar 

  70. Schoenau E, Fricke O. Mechanical influences on bone development in children. Eur J Endocrinol. 2008;159 Suppl 1:S27–31. doi:10.1530/EJE-08-0312.

    Article  CAS  PubMed  Google Scholar 

  71. Kalkwarf KJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density and osteoporotic fractures in US women. Am J Clin Nutr. 2003;77(1):257–65.

    CAS  PubMed  Google Scholar 

  72. Wosje KS, Specker BL. Role of calcium in bone health during childhood. Nutr Rev. 2000;58(9):253–68.

    Article  CAS  PubMed  Google Scholar 

  73. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99(6):1287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Esterle L, Nguyen M, Walrant-Debray O, Sabatier JP, Garabedian M. Adverse interaction of low-calcium diet and low 25(OH)D levels on lumbar spine mineralization in late-pubertal girls. J Bone Miner Res. 2010;25(11):2392–8. doi:10.1002/jbmr.134.

    Article  CAS  PubMed  Google Scholar 

  75. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year old children. J Bone Miner Res. 2003;18(5):885–92.

    Article  CAS  PubMed  Google Scholar 

  76. Iuliano-Burns S, Saxon L, Naughton G, Gibbons K, Bass SL. Regional specificity of calcium and exercise during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res. 2003;18(1):156–62.

    Article  PubMed  Google Scholar 

  77. Dogan M, Derman O, Oksüz-Kanbur N, Akgül S, Kutluk T. The effects of nutrition and physical activity on bone development in male adolescents. Turk J Pediatr. 2009;51(6):545–50.

    PubMed  Google Scholar 

  78. Lappe JM, Watson P, Gilsanz V, Hangartner T, Kalkwarf HJ, Oberfield S, et al. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development. J Bone Miner Res. 2015;30(1):156–64. doi:10.1002/jbmr.2319.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R. Tracking of environmental determinants of bone structure and strength development in healthy boys: an eight-year follow up study on the positive interaction between physical activity and protein intake from prepuberty to mid-late adolescence. J Bone Miner Res. 2014;29(10):2182–92. doi:10.1002/jbmr.2247.

    Article  CAS  PubMed  Google Scholar 

  80. Lucas R, Fraga S, Ramos E, Barros H. Early initiation of smoking and alcohol drinking as a predictor of lower forearm bone mineral density in late adolescence: a cohort study in girls. PLoS One. 2012;7(10), e46940. doi:10.1371/journal.pone.0046940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zemel B. Bone mineral accretion and its relationship to growth, sexual maturation and body composition during childhood and adolescence. World Rev Nutr Diet. 2013;106:39–45. doi:10.1159/000342601.

    PubMed  Google Scholar 

  82. Gilsanz V, Chalfant J, Kalkwarf H, Zemel B, Lappe J, Oberfield S, et al. Age at onset of puberty predicts bone mass in young adulthood. J Pediatr. 2011;158(1):100–105.e2. doi:10.1016/j.jpeds.2010.06.054.

    Article  PubMed  Google Scholar 

  83. Schoenau E. Bone mass increase in puberty: what makes it happen? Horm Res. 2006;65 Suppl 2:2–10.

    Article  CAS  PubMed  Google Scholar 

  84. Pérez-López FR, Chedraui P, Cuadros-López JL. Bone mass gain during puberty and adolescence: deconstructing gender characteristics. Curr Med Chem. 2010;17(5):453–66.

    Article  PubMed  Google Scholar 

  85. Yilmaz D, Ersoy B, Bilgin E, Gümüşer G, Onur E, Pinar ED. Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab. 2005;23(6):476–82.

    Article  CAS  PubMed  Google Scholar 

  86. Doneray H, Orbak Z. Association between anthropometric hormonal measurements and bone mineral density in puberty and constitutional delay of growth and puberty. West Indian Med J. 2010;59(2):125–30.

    CAS  PubMed  Google Scholar 

  87. Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res. 2014;29(2):467–78. doi:10.1002/jbmr.2036.

    Article  PubMed  Google Scholar 

  88. Riancho JA. Polymorphisms in the CYP19 gene that influence bone mineral density. Pharmacogenomics. 2007;8(4):339–52.

    Article  CAS  PubMed  Google Scholar 

  89. Clarke BL, Khosla S. Female reproductive system and bone. Arch Biochem Biophys. 2010;503(1):118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sartorius GA, Ly LP, Handelsman DJ. Male sexual function can be maintained without aromatization: randomized placebo-controlled trial of dihydrotestosterone (DHT) in healthy, older men for 24 months. J Sex Med. 2014;11(10):2562–70.

    Article  CAS  PubMed  Google Scholar 

  91. Forwood MR, Li L, Kelly WL, Bennet MB. Growth hormone is permissive for skeletal adaptation to mechanical loading. J Bone Miner Res. 2001;16(12):2284–90.

    Article  CAS  PubMed  Google Scholar 

  92. Courtland H-W, Sun H, Beth-On M, Wu Y, Elis S, Rosen CJ, et al. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production. J Bone Miner Res. 2011;26(4):761–8. doi:10.1002/jbmr.265.

    Article  CAS  PubMed  Google Scholar 

  93. Breen ME, Laing EM, Hall DB, Hausman DB, Taylor RG, Isales CM, Ding KH, Pollock NK, Hamrick MW, Baile CA, Lewis RD. 25-hydroxyvitamin D, insulin-like growth factor-I, and bone mineral accrual during growth. J Clin Endocrinol Metab. 2011;96(1):E89–98. doi:10.1210/jc.2010-0595.

    Article  CAS  PubMed  Google Scholar 

  94. Xing W, Govoni KE, Donahue LR, Kesavan C, Wergedal J, Long C, Bassett JH, Gogakos A, Wojcicka A, Williams GR, Mohan S. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice. J Bone Miner Res. 2012;27(5):1067–79. doi:10.1002/jbmr.1551.

    Article  CAS  PubMed  Google Scholar 

  95. Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Giannini S, et al. Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. J Bone Miner Res. 2008;23(5):683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sayers A, Timpson NJ, Sattar N, Deanfield J, Hingorani AD, Davey-Smith G, et al. Adiponectin and its association with bone mass accrual in childhood. J Bone Miner Res. 2010;25(10):2212–20. doi:10.1002/jbmr.116.

    Article  CAS  PubMed  Google Scholar 

  97. Klentrou P, Ludwa IA, Falk B. Factors associated with bone turnover and speed of sound in early and late-pubertal females. Appl Physiol Nutr Metab. 2011;36(5):707–14. doi:10.1139/h11-085.

    Article  CAS  PubMed  Google Scholar 

  98. Kirmani S, Amin S, McCready LK, Atkinson EJ, Melton III LJ, Müller R, et al. Sclerostin levels during growth in children. Osteoporos Int. 2012;23(3):1123–30. doi:10.1007/s00198-011-1669-z.

    Article  CAS  PubMed  Google Scholar 

  99. Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocr Pract. 2012;18(5):758–62.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zofkova I. Bone tissue as a systemic endocrine regulator. Physiol Res. 2014;3 [Epub ahead of print].

    Google Scholar 

  101. Martin DD, Wit JM, Hochberg Z, Sävendahl L, van Rijn RR, Fricke O, Cameron N, Caliebe J, Hertel T, Kiepe D, Albertsson-Wikland K, Thodberg HH, Binder G, Ranke MB. The use of bone age in clinical practice: part 1. Horm Res Paediatr. 2011;76(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  102. De Sanctis V, Di Maio S, Soliman AT, Raiola G, Elalaily R, Millimaggi G. Hand X-ray in pediatric endocrinology: Skeletal age assessment and beyond. Indian J Endocrinol Metab. 2014;18 Suppl 1:S63–71.

    PubMed  PubMed Central  Google Scholar 

  103. Gilsanz V, Ratib O. Hand bone age. A digital atlas of skeletal maturity. 2nd ed. Berlin: Springer; 2012.

    Google Scholar 

  104. Thodberg HH, Sävendahl L. Validation and reference values of automated bone age determination for four ethnicities. Acad Radiol. 2010;17(11):1425–32. doi:10.1016/j.acra.2010.06.007.

    Article  PubMed  Google Scholar 

  105. Thodberg HH, Kreiborg S, Juul A, Pedersen KD. The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging. 2009;28(1):52–66.

    Article  PubMed  Google Scholar 

  106. Martin DD, Wit JM, Hochberg Z, van Rijn RR, Fricke O, Werther G, Cameron N, Hertel T, Wudy SA, Butler G, Thodberg HH, Binder G, Ranke MB. The use of bone age in clinical practice: part 2. Horm Res Paediatr. 2011;76(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  107. Lazar L, Phillip M. Pubertal disorders and bone maturation. Endocrinol Metab Clin North Am. 2012;41(4):805–25.

    Article  PubMed  Google Scholar 

  108. DeSalvo DJ, Mehra R, Vaidyanathan P, Kaplowitz PB. In children with premature adrenarche, bone age advancement by 2 or more years is common and generally benign. J Pediatr Endocrinol Metab. 2013;26(3-4):215–21. doi:10.1515/jpem-2012-0283.

    Article  CAS  PubMed  Google Scholar 

  109. Duren DL, Nahhas RW, Sherwood RJ. Do secular trends in skeletal maturity occur equally in both sexes? Clin Orthop Relat Res. 2015;473:2559–67.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail A. Boyanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boyanov, M.A. (2016). Bone Development in Children and Adolescents. In: Kumanov, P., Agarwal, A. (eds) Puberty. Springer, Cham. https://doi.org/10.1007/978-3-319-32122-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32122-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32120-2

  • Online ISBN: 978-3-319-32122-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics