Advertisement

Green Supplier Selection Framework Based on Multi-Criteria Decision-Analysis Approach

  • Jarosław WątróbskiEmail author
  • Wojciech Sałabun
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 52)

Abstract

The aim of this article is to present the framework for dynamic suppliers’ evaluation and selection. The proposed framework defines input information together with a methodological background required for decision support processes. Authors suggest using the multi-criteria decision-analysis (MCDA) methodology to propose a dynamic approach. Therefore, the fuzzy TOPSIS method has been selected as a method that provides the ability to aggregate numerical and linguistic data, which are obtained from various inputs. After discussions on a framework outline, an empirical study is given. The presented problem concerns the selection of a supplier for the company producing cable bundles. Finally, a ranking for 25 vendors (for 12 periods) is obtained as a result, which facilitates the diversification of supplies for the discussed company.

Keywords

Fuzzy set theory Supplier selection Framework Supply chain management (SCM) TOPSIS Multi-criteria decision-analysis (MCDA) 

References

  1. 1.
    Dehghani, M., Esmaeilian, M., Tavakkoli-Moghaddam, R.: Employing fuzzy ANP for green supplier selection and order allocations: a case study. Int. J. Econ. Manag. Soc. Sci. 2(8), 565–575 (2013)Google Scholar
  2. 2.
    Chan, F.T.S., Kumar, N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Int. J. Manag. Sci. 35(4), 417–431 (2007)Google Scholar
  3. 3.
    Chen, C.T., Lin, C.T., Huang, S.F.: A fuzzy approach for supplier evaluation and selection in supply chain management. Int. Prod. Econ. 102, 289–301 (2006)CrossRefGoogle Scholar
  4. 4.
    Gencer, C., Gurpinar, D.: Analytic network process in supplier selection: a case study in an electronic firm. Appl. Math. Model. 31(11), 2475–2486 (2007)Google Scholar
  5. 5.
    Shemshadi, A., Toreihi, M., Shirazi, H., Tarokh, M.J.: Supplier selection based on supplier risk: an ANP and fuzzy TOPSIS approach. J. Math. Comput. Sci. 2(1), 111–121 (2011)Google Scholar
  6. 6.
    Malmir, R., Hamzehi, E., Farsijani, H.: A multi stage decision making model to evaluate suppliers by using MOLP and ANP in a strategic approach. Int. J. Appl. Innov. Eng. Manag. 2(3), 563–577 (2013)Google Scholar
  7. 7.
    Palanisamy, P., Abdul Zubar, H.: Hybrid MCDM approach for vendor ranking. J. Manufact. Tech. Manag. 24(6), 905–928 (2013)CrossRefGoogle Scholar
  8. 8.
    Khodaverdi, R., Olfat, L.: A fuzzy MCDM approach for supplier selection and evaluation: a case study in an automobile manufacturing company. International Conference on Industrial Engineering and Systems Management May 25 - 27 IESM’ 2011, Metz- France (2011)Google Scholar
  9. 9.
    Kannan, D., Govindan, K., Rajendran, S.: Fuzzy axiomatic design approach based green supplier selection: a case study from Singapore. J. Clean. Prod. 96, 194–208 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.J.: Structured methodology for supplier selection and evaluation in a supply chain. Inf. Sci. 181, 1651–1670 (2011)CrossRefGoogle Scholar
  11. 11.
    Guarnieri, P., Sobreiro, V.A., Nagano, M.S., Serrano, A.L.M.: The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: a Brazilian case. J. Clean. Prod. 96, 209–219 (2015)CrossRefGoogle Scholar
  12. 12.
    Wątróbski, J., Jankowski, J.: Guideline for MCDA method selection in production management area. In: Różewski, P., Novikov, D., Bakhtadze, N., Zaikin, O. (eds.) New Frontiers in Information and Production Systems Modelling and Analysis. Intelligent Systems Reference Library, vol. 98, pp. 119–138. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  13. 13.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)Google Scholar
  14. 14.
    Wątróbski, J., Jankowski, J.: Knowledge management in MCDA domain. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 5, pp. 1445–1450. IEEE (2015) doi:  10.15439/2015F295
  15. 15.
    Jankowski, J., Wątróbski, J., Piwowarski, M.: Fuzzy modeling of digital products pricing in the virtual marketplace. In: Proceedings of 6th International Conference on Hybrid Artificial Intelligent Systems. LNCS, vol. 6678, pp. 338–346. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Jankowski J.: Balanced approach to the design of conversion oriented websites with limited negative impact on the users. In: Proceedings of 5th International Conference on Computational Collective Intelligence Technologies and Applications. LNCS, vol. 7803, pp. 527-536. Springer, Heidelberg (2013)Google Scholar
  17. 17.
    Shyur, H.J., Shih, H.S.: A hybrid MCDM model for strategic vendor selection. Math. Comput. Model. 44, 749–761 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pani, A.K., Kumar Kar A.: A study to compare relative importance of criteria for supplier evaluation in e-procurement. In: 44th Hawaii International Conference on Systems Science (HICSS-44 2011), Proceedings, Koloa, Kauai, HI, USA, 4–7 Jan 2011Google Scholar
  19. 19.
    Tahriri, F., Osman, R.M., Ali, A., Yusuff, M.R., Esfandiary, A.: AHP approach for supplier evaluation and selection in a steel manufacturing company. J. Ind. Eng. Manag. 54–76 (2008)Google Scholar
  20. 20.
    Tam, M.C.Y., Tummala, V.M.R.: An application of the AHP in vendor selection of a telecommunications system. The International Journal of Management Science, vol. 29, iss. 2, pp. 171–182, (2001)Google Scholar
  21. 21.
    Sivrikaya, B.T., Kaya, A., Dursun, E., Cebi, F.: Fuzzy AHP–goal programming approach for a supplier selection problem. Res. Logistics Prod. 5(3), 271–285 (2015)Google Scholar
  22. 22.
    Roshandel, J., Miri-Nargesi, S.S., Hatami-Shirkouhi, L.: Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. Appl. Math. Model. 37, 10170–10181 (2013)CrossRefGoogle Scholar
  23. 23.
    Wang, C.H.: Using quality function deployment to conduct vendor assessment and supplier recommendation for business-intelligence systems. Comput. Ind. Eng. 84, 24–31 (2015)CrossRefGoogle Scholar
  24. 24.
    Akman, G.: Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods. Comput. Ind. Eng. 86, 69–82 (2015)CrossRefGoogle Scholar
  25. 25.
    Rezaei, J., Ortt, R.: Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. Eur. J. Oper. Res. 225, 75–84 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Hsua, C.H., Wanga, F.K., Tzengb, G.H.: The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR. Resour. Conserv. Recycl. 66, 95–111 (2012)CrossRefGoogle Scholar
  27. 27.
    Vinodh, S., Ramiya, R.A., Gautham, S.G.: Application of fuzzy analytic network process for supplier selection in a manufacturing organization. Expert Syst. Appl. 38, 272–280 (2011)CrossRefGoogle Scholar
  28. 28.
    Shemshadi, A., Shirazi, H., Toreihi, M., Tarokh, M.J.: A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 38, 12160–12167 (2011)CrossRefGoogle Scholar
  29. 29.
    Yu, C., Wong, T.N.: An agent-based negotiation model for supplier selection of multiple products with synergy effect. Expert Syst. Appl. 42, 223–237 (2015)CrossRefGoogle Scholar
  30. 30.
    Bruno, G., Esposito, E., Genovese, A., Passaro, R.: AHP-based approaches for supplier evaluation: problems and perspectives. J. Purchasing Supply Manag. 18, 159–172 (2012)CrossRefGoogle Scholar
  31. 31.
    Dargia, A., Anjomshoaea, A., Galankashia, M.R., Memaria, A., Binti, M., Tapa, Md: Supplier selection: a fuzzy-ANP approach. Procedia Comput. Sci. 31, 691–700 (2014)CrossRefGoogle Scholar
  32. 32.
    Tyagia, M., Kumarb, P., Kumarc, D.: A hybrid approach using AHP-TOPSIS for analyzing e-SCM performance. Procedia Eng. 97, 2195–2203 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations