The Characteristic Objects Method: A New Intelligent Decision Support Tool for Sustainable Manufacturing

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 52)


This paper presents a new multi-criteria decision-making method, which is called the Characteristic Objects method, in the field of sustainable manufacturing. This approach is an alternative for AHP, TOPSIS, ELECTRE or PROMETHEE methods. The paper presents the possibility of using the COMET method for sustainable manufacturing. For this purpose, a brief review of the literature is shown. Then the COMET method is presented in detail. At the end of the paper, a simple problem is solved by using the COMET method.


Fuzzy set theory Characteristic objects method AHP ELECTRE Sustainable manufacturing TOPSIS MCDA 


  1. 1.
    Cavallaro, F.: An integrated multi-criteria system to assess sustainable energy options: an application of the PROMETHEE method (2005)Google Scholar
  2. 2.
    Dai, J., Blackhurst, J.: A four-phase AHP-QFD approach for supplier assessment: a sustainability perspective. Int. J. Prod. Res. 50(19), 5474–5490 (2012)CrossRefGoogle Scholar
  3. 3.
    Gupta, A., Vangari, R., Jayal, A.D., Jawahir, I.S.: Priority evaluation of product metrics for sustainable manufacturing. In: Global Product Development, pp. 631–641 (2011)Google Scholar
  4. 4.
    Gupta, S., Dangayach, G.S., Singh, A.K., Rao, P.N.: Analytic hierarchy process (AHP) model for evaluating sustainable manufacturing practices in indian electrical panel industries. Procedia-Soc. Behav. Sci. 189, 208–216 (2015)CrossRefGoogle Scholar
  5. 5.
    Jayal, A.D., Badurdeen, F., Dillon, O.W., Jawahir, I.S.: Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP J. Manufact. Sci. Technol. 2(3), 144–152 (2010)CrossRefGoogle Scholar
  6. 6.
    Mittal, V.K., Sangwan, K.S.: Prioritizing drivers for green manufacturing: environmental, social and economic perspectives. Procedia CIRP 15, 135–140 (2014)CrossRefGoogle Scholar
  7. 7.
    Ocampo, L., Clark, E.: A proposed framework in developing sustainable manufacturing initiatives using analytic hierarchy process (AHP). Ind. Syst. Eng. Rev. 3(1), 7–16 (2015)Google Scholar
  8. 8.
    Ocampo, L., Clark, E., Tanudtanud, K.V.: Structural decisions of sustainable manufacturing strategy with fuzzy analytic network process (FANP). Int. J. Strateg. Decis. Sci. (IJSDS) 6(2), 12–27 (2015)CrossRefGoogle Scholar
  9. 9.
    Riesgo, L., Gallego-Ayala, J.: Multicriteria analysis of Olive farms sustainability: an application of TOPSIS models. In: Handbook of Operations Research in Agriculture and the Agri-Food Industry, pp. 327–353 (2015)Google Scholar
  10. 10.
    Singh, S., Olugu, E.U., Musa, S.N., Mahat, A.B., Wong, K.Y.: Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment. Int. J. Adv. Manuf. Technol. pp. 1–17 (2015)Google Scholar
  11. 11.
    Streimikiene, D., Balezentis, T., KrisciukaitienÄ, I., Balezentis, A.: Prioritizing sustainable electricity production technologies: MCDM approach. Renew. Sustain. Energy Rev. 16(5), 3302–3311 (2012)CrossRefGoogle Scholar
  12. 12.
    Venkatesh, V.G., Dubey, R., Joy, P., Thomas, M., Vijeesh, V., Moosa, A.: Supplier selection in blood bags manufacturing industry using TOPSIS model. Int. J. Oper. Res. 24(4), 461–488 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vinodh, S., Girubha, R.J.: PROMETHEE based sustainable concept selection. Appl. Math. Model. 36(11), 5301–5308 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, H., Haapala, KR.: Integrating sustainability assessment into manufacturing decision making. In: Leveraging Technology for a Sustainable World, pp. 551–556 (2012)Google Scholar
  15. 15.
    Watróbski, J., Jankowski, J.: Guideline for MCDA method selection in production management area. In: Rewski, P., Novikov, D., Bakhtadze, N., Zaikin, O. (eds.) New Frontiers in Information and Production Systems Modelling and Analysis, vol. 98, pp. 119–138. Intelligent Systems Reference Library (2016)Google Scholar
  16. 16.
    Watróbski, J., Jankowski, J.: Knowledge management in MCDA domain. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Annals of Computer Science and Information Systems, vol. 5, pp. 1445–1450 (2015)Google Scholar
  17. 17.
    Sałabun, W.: Application of the fuzzy multi-criteria decision-making method to identify nonlinear decision models. Int. J. Comput. Appl. 89(15), 1–6 (2014)Google Scholar
  18. 18.
    Sałabun, W.: Reduction in the number of comparisons required to create matrix of expert judgment in the comet method. Manag. Prod. Eng. Rev. 5(3), 62–69 (2014)Google Scholar
  19. 19.
    Sałabun, W.: The characteristic objects method: a new distancebased approach to multicriteria decisionmaking problems. J. MultiCriteria Decis. Anal. 22(1–2), 37–50 (2015)CrossRefGoogle Scholar
  20. 20.
    Jankowski, J.: Balanced approach to the design of conversion oriented websites with limited negative impact on the users. In: Proceedings of 5-th International Conference on Computational Collective Intelligence Technologies and Applications, LNCS, vol. 7803, pp. 527–536. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Jankowski, J.: Modeling the structure of recommending interfaces with adjustable influence on users. In: Proceedings of 5-th Asian Conference on Intelligent Information and Database Systems, LNCS, vol. 7803, pp. 429–438. Springer, Heidelberg (2013)Google Scholar
  22. 22.
    Piegat, A., Sałabun, W.: Identification of a multicriteria decision-making model using the characteristic objects method. Appl. Comput. Intell. Soft Comput. 2014 (2014)Google Scholar
  23. 23.
    Piegat, A., Sałabun, W.: Nonlinearity of human multi-criteria in decision-making. J. Theor. Appl. Comput. Sci. 6(3), 36–49 (2012)Google Scholar
  24. 24.
    Jankowski, J.: Increasing website conversions using content repetitions with different levels of persuasion. In: Proceedings of 5-th Asian Conference on Intelligent Information and Database Systems, LNCS, vol. 7803, pp. 439–448. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Kowalski, K., Stagl, S., Madlener, R., Omann, I.: Sustainable energy futures: methodological challenges in combining scenarios and participatory multi-criteria analysis. Eur. J. Oper. Res. 197(3), 1063–1074 (2009)CrossRefGoogle Scholar
  26. 26.
    Sawadogo, M., Anciaux, D.: Intermodal transportation within the green supply chain: an approach based on ELECTRE method. Int. J. Bus. Perfor. Supply Chain Model. 3(1), 43–65 (2011)CrossRefGoogle Scholar
  27. 27.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chan, F.T., Kumar, N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 35(4), 417–431 (2007)CrossRefGoogle Scholar
  29. 29.
    Kannan, G., Khodaverdi, R., Jafarian, A.: A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 47, 345–354 (2013)CrossRefGoogle Scholar
  30. 30.
    Onut, S., Kara, S.S., Isik, E.: Long term supplier selection using a combined fuzzy MCDM approach: a case study for a telecommunication company. Expert Syst. Appl. 36(2), 3887–3895 (2009)CrossRefGoogle Scholar
  31. 31.
    Kaufmann, A., Gupta, M.: Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Publishers, Amsterdam, Netherlands (1988)zbMATHGoogle Scholar
  32. 32.
    Kumar, A., Singh, P., Kaur, A.: RM approach for ranking of generalized trapezoidal fuzzy numbers. Fuzzy Inf. Eng. 2(1), 37–47 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision Making: Models, Methods and Applications. John Wiley & Sons, Chichester (2011)zbMATHGoogle Scholar
  34. 34.
    Piegat, A.: Fuzzy Modeling and Control. Springer-Verlag, New York (2001)CrossRefzbMATHGoogle Scholar
  35. 35.
    Ross, T.J.: Fuzzy Logic with Engineering Applications. John Wiley and Sons, Chichester (2010)CrossRefGoogle Scholar
  36. 36.
    Sałabun, W.: The use of fuzzy logic to evaluate the nonlinearity of human multi-criteria used in decision making. Przegl. Elektrotechniczny (Electr. Rev.) 88(10b), 235–238 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations