Skip to main content

Improving Performance of Eco-Industrial Parks

  • Conference paper
  • First Online:
Sustainable Design and Manufacturing 2016 (SDM 2016)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 52))

Included in the following conference series:

Abstract

Industrial Ecology hypothesizes that networks of industries designed to be analogous to the structure and properties of food webs may approach a similarly sustainable and efficient state. Although ecology is the metaphor for designing Eco-Industrial Parks (EIPs), prior research has shown that IEPs are inferior in performance compared to natural ecosystems. One EIP design approach is to enlarge EIPs by combining two or more synergistic networks to create a larger, and hopefully more successful, synergistic mega-network. An quantitative analysis using ecosystem metrics is presented in this paper in order to test the potential of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, D.T., et al.: Environmentally benign manufacturing: Trends in Europe, Japan and the USA. ASME J. Manuf. Sci. 124(4), 908–920 (2002)

    Article  Google Scholar 

  2. Frosch, R.A., Gallopoulos, N.E.: Strategies for manufacturing. Sci. Am., 144–152 (1989)

    Google Scholar 

  3. Chertow, M.R.: Industrial symbiosis: Literature and taxonomy. Annu. Rev. Energy Environ. 25, 313–337 (2000)

    Article  Google Scholar 

  4. Ehrenfeld, J., Gertler, N.: Industrial ecology in practice: The evolution of interdependence at Kalundborg. J. Ind. Ecol. 1(1), 67–79 (1997)

    Article  Google Scholar 

  5. Frosch, R.A.: Industrial ecology: A philosophical introduction. Proc. Natl. Acad. Sci. USA 89(3), 800–803 (1992)

    Article  Google Scholar 

  6. Jensen, P.D., Basson, L., Leach, M.: Reinterpreting industrial ecology. J. Ind. Ecol. 15(5), 680–692 (2011)

    Article  Google Scholar 

  7. Hess, G.: The ecosystem: Model or metaphor? Epistemological difficulties in industrial ecology. J. Ind. Ecol. 14(2), 16 (2010)

    Article  Google Scholar 

  8. Isenmann, R.: Industrial ecology: Shedding more light on its perspective of understanding nature as model. Sustain. Dev. 11, 143–158 (2003)

    Article  Google Scholar 

  9. Briand, F.: Environmental control of food web structure. Ecol. Soc. Am. 64(2), 253–263 (1983)

    Google Scholar 

  10. Briand, F., Cohen, J.E.: Environmental correlates of food chain length. Science 238(4829), 956–960 (1987)

    Article  Google Scholar 

  11. Fath, B.D.: Structural food web regimes. Ecol. Model. 208, 391–394 (2007)

    Article  Google Scholar 

  12. Schoener, T.H.: Food webs from the small to the large. Ecology 70(6), 1559–1589 (1989)

    Article  Google Scholar 

  13. Warren, P.H.: Variation in food web structure: The determinants of connectance. Am. Nat. 136(5), 689–700 (1990)

    Article  Google Scholar 

  14. Reap, J., Bras, B.: A method for finding biologically inspired guidelines for environmentally benign design and manufacturing. ASME J. Mech. Des. 136(11), 11 (2014)

    Article  Google Scholar 

  15. Layton, A., Bras, B., Weissburg, M.: Ecological robustness as a design principle for sustainable industrial systems. In: ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2015, Boston, MA, ASME (2015)

    Google Scholar 

  16. Layton, A., Bras, B., Weissburg, M.: Industrial Ecosystems and Food Webs: An expansion and update of existing data for eco-industrial parks and understanding the ecological food webs they wish to mimic. J. Ind. Ecol. (2015)

    Google Scholar 

  17. Odum, E.P.: The strategy of ecosystem development. Science 164(3877), 262–270 (1969)

    Article  Google Scholar 

  18. Pimm, S.L.: Food Webs. Chapman and Hall, London (1982)

    Book  Google Scholar 

  19. Warren, P.H.: Variation in food web structure: The determinants of connectance. Am. Nat. 136(5), 689–698 (1990)

    Article  Google Scholar 

  20. Cohen, J.E., et al.: Improving food webs. Ecology 74(1), 252–258 (1993)

    Article  Google Scholar 

  21. Ulanowicz, R.E.: Ecology, the Ascendent Perspective. Columbia University Press, New York (1997)

    Google Scholar 

  22. Fath, B.D., Halnes, G.: Cyclic energy pathways in ecological food webs. Ecol. Model. 208(1), 17–24 (2007)

    Article  Google Scholar 

  23. Bascompte, J., Jordano, P.: Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007)

    Article  MATH  Google Scholar 

  24. Dunne, J.A., Williams, R.J., Martinez, N.D.: Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5(4), 558–567 (2002)

    Article  Google Scholar 

  25. Borrett, S.R., Fath, B.D., Patten, B.C.: Functional integration of ecological networks through pathway proliferation. J. Theor. Biol. 245(1), 98–111 (2007)

    Article  MathSciNet  Google Scholar 

  26. Fath, B.D., Network Analysis: Foundations, Extensions, and Applications of a Systems Theory of the Environment, p. 176. University of Georgia, Athens (1998)

    Google Scholar 

  27. Layton, A., et al.: Correlation between thermodynamic efficiency and ecological cyclicity for thermodynamic power cycles. PLoS ONE 7(12), 1–7 (2012)

    Article  Google Scholar 

  28. Mathews, J.A., Tan, H.: Progress toward a circular economy in China. J. Ind. Ecol. 15(3), 435–457 (2011)

    Article  Google Scholar 

  29. Sokka, L., Pakarinen, S., Melanen, M.: Industrial symbiosis contributing to more sustainable energy use—an example from the forest industry in Kymenlaakso, Finland. J. Clean. Prod. 19(4), 285–293 (2011)

    Article  Google Scholar 

  30. Reap, J.J.: Holistic Biomimicry: A Biologically Inspired Approach to Environmentally Benign Engineering, in Mechanical Engineering. Georgia Institute of Technology, Atlanta (2009)

    Google Scholar 

  31. Ometto, A.R., Ramos, P.A.R., Lombardi, G.: The benefits of a Brazilian agro-industrial symbiosis system and the strategies to make it happen. J. Clean. Prod. 15(13–14), 1253–1258 (2007)

    Article  Google Scholar 

  32. Corder, G.: Potential Synergy Opportunities in the Gladstone Industrial Region, in Project 3C1: Developing Local Synergies in the Gladstone Industrial Area, p. 68. Centre for Sustainable Resource Processing, Perth (2005)

    Google Scholar 

  33. Corder, G.D.: Final Project Report, in Project 3C1: Developing Local Synergies in the Gladstone Industrial Area, p. 47. Centre for Sustainable Resource Processing, Perth (2008)

    Google Scholar 

  34. Martin, S., et al.: Eco-industrial Parks: A Case Study and Analysis of Economic, Environmental, Technical, and Regulatory Issues. In: Doyle, B. (ed.). U.S. EPA, Washington, DC (1996)

    Google Scholar 

  35. Cote, R.P.: New Way of Thinking About Industrial Systems With Nature as Model, in Canadian Pollution Prevention Roundtable. Charlottetown, PEI (2009)

    Google Scholar 

  36. Hashimoto, S., et al.: Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki. Resour. Conserv. Recycl. 54(10), 704–710 (2010)

    Article  Google Scholar 

  37. Korhonen, J., Snäkin, J.-P.: Analysing the evolution of industrial ecosystems: Concepts and application. Ecol. Econ. 52(2), 169–186 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. CMMI-0600243, CBET-0967536 and CBET-1510531. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Bras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bras, B., Layton, A., Weissburg, M. (2016). Improving Performance of Eco-Industrial Parks. In: Setchi, R., Howlett, R., Liu, Y., Theobald, P. (eds) Sustainable Design and Manufacturing 2016. SDM 2016. Smart Innovation, Systems and Technologies, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-32098-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32098-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32096-0

  • Online ISBN: 978-3-319-32098-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics