Improving Performance of Eco-Industrial Parks

  • Bert BrasEmail author
  • Astrid Layton
  • Marc Weissburg
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 52)


Industrial Ecology hypothesizes that networks of industries designed to be analogous to the structure and properties of food webs may approach a similarly sustainable and efficient state. Although ecology is the metaphor for designing Eco-Industrial Parks (EIPs), prior research has shown that IEPs are inferior in performance compared to natural ecosystems. One EIP design approach is to enlarge EIPs by combining two or more synergistic networks to create a larger, and hopefully more successful, synergistic mega-network. An quantitative analysis using ecosystem metrics is presented in this paper in order to test the potential of this approach.


Industrial ecology Ecosystems Design Manufacturing 



This material is based upon work supported by the National Science Foundation under Grant Nos. CMMI-0600243, CBET-0967536 and CBET-1510531. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    Allen, D.T., et al.: Environmentally benign manufacturing: Trends in Europe, Japan and the USA. ASME J. Manuf. Sci. 124(4), 908–920 (2002)CrossRefGoogle Scholar
  2. 2.
    Frosch, R.A., Gallopoulos, N.E.: Strategies for manufacturing. Sci. Am., 144–152 (1989)Google Scholar
  3. 3.
    Chertow, M.R.: Industrial symbiosis: Literature and taxonomy. Annu. Rev. Energy Environ. 25, 313–337 (2000)CrossRefGoogle Scholar
  4. 4.
    Ehrenfeld, J., Gertler, N.: Industrial ecology in practice: The evolution of interdependence at Kalundborg. J. Ind. Ecol. 1(1), 67–79 (1997)CrossRefGoogle Scholar
  5. 5.
    Frosch, R.A.: Industrial ecology: A philosophical introduction. Proc. Natl. Acad. Sci. USA 89(3), 800–803 (1992)CrossRefGoogle Scholar
  6. 6.
    Jensen, P.D., Basson, L., Leach, M.: Reinterpreting industrial ecology. J. Ind. Ecol. 15(5), 680–692 (2011)CrossRefGoogle Scholar
  7. 7.
    Hess, G.: The ecosystem: Model or metaphor? Epistemological difficulties in industrial ecology. J. Ind. Ecol. 14(2), 16 (2010)CrossRefGoogle Scholar
  8. 8.
    Isenmann, R.: Industrial ecology: Shedding more light on its perspective of understanding nature as model. Sustain. Dev. 11, 143–158 (2003)CrossRefGoogle Scholar
  9. 9.
    Briand, F.: Environmental control of food web structure. Ecol. Soc. Am. 64(2), 253–263 (1983)Google Scholar
  10. 10.
    Briand, F., Cohen, J.E.: Environmental correlates of food chain length. Science 238(4829), 956–960 (1987)CrossRefGoogle Scholar
  11. 11.
    Fath, B.D.: Structural food web regimes. Ecol. Model. 208, 391–394 (2007)CrossRefGoogle Scholar
  12. 12.
    Schoener, T.H.: Food webs from the small to the large. Ecology 70(6), 1559–1589 (1989)CrossRefGoogle Scholar
  13. 13.
    Warren, P.H.: Variation in food web structure: The determinants of connectance. Am. Nat. 136(5), 689–700 (1990)CrossRefGoogle Scholar
  14. 14.
    Reap, J., Bras, B.: A method for finding biologically inspired guidelines for environmentally benign design and manufacturing. ASME J. Mech. Des. 136(11), 11 (2014)CrossRefGoogle Scholar
  15. 15.
    Layton, A., Bras, B., Weissburg, M.: Ecological robustness as a design principle for sustainable industrial systems. In: ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2015, Boston, MA, ASME (2015)Google Scholar
  16. 16.
    Layton, A., Bras, B., Weissburg, M.: Industrial Ecosystems and Food Webs: An expansion and update of existing data for eco-industrial parks and understanding the ecological food webs they wish to mimic. J. Ind. Ecol. (2015)Google Scholar
  17. 17.
    Odum, E.P.: The strategy of ecosystem development. Science 164(3877), 262–270 (1969)CrossRefGoogle Scholar
  18. 18.
    Pimm, S.L.: Food Webs. Chapman and Hall, London (1982)CrossRefGoogle Scholar
  19. 19.
    Warren, P.H.: Variation in food web structure: The determinants of connectance. Am. Nat. 136(5), 689–698 (1990)CrossRefGoogle Scholar
  20. 20.
    Cohen, J.E., et al.: Improving food webs. Ecology 74(1), 252–258 (1993)CrossRefGoogle Scholar
  21. 21.
    Ulanowicz, R.E.: Ecology, the Ascendent Perspective. Columbia University Press, New York (1997)Google Scholar
  22. 22.
    Fath, B.D., Halnes, G.: Cyclic energy pathways in ecological food webs. Ecol. Model. 208(1), 17–24 (2007)CrossRefGoogle Scholar
  23. 23.
    Bascompte, J., Jordano, P.: Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Dunne, J.A., Williams, R.J., Martinez, N.D.: Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5(4), 558–567 (2002)CrossRefGoogle Scholar
  25. 25.
    Borrett, S.R., Fath, B.D., Patten, B.C.: Functional integration of ecological networks through pathway proliferation. J. Theor. Biol. 245(1), 98–111 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fath, B.D., Network Analysis: Foundations, Extensions, and Applications of a Systems Theory of the Environment, p. 176. University of Georgia, Athens (1998)Google Scholar
  27. 27.
    Layton, A., et al.: Correlation between thermodynamic efficiency and ecological cyclicity for thermodynamic power cycles. PLoS ONE 7(12), 1–7 (2012)CrossRefGoogle Scholar
  28. 28.
    Mathews, J.A., Tan, H.: Progress toward a circular economy in China. J. Ind. Ecol. 15(3), 435–457 (2011)CrossRefGoogle Scholar
  29. 29.
    Sokka, L., Pakarinen, S., Melanen, M.: Industrial symbiosis contributing to more sustainable energy use—an example from the forest industry in Kymenlaakso, Finland. J. Clean. Prod. 19(4), 285–293 (2011)CrossRefGoogle Scholar
  30. 30.
    Reap, J.J.: Holistic Biomimicry: A Biologically Inspired Approach to Environmentally Benign Engineering, in Mechanical Engineering. Georgia Institute of Technology, Atlanta (2009)Google Scholar
  31. 31.
    Ometto, A.R., Ramos, P.A.R., Lombardi, G.: The benefits of a Brazilian agro-industrial symbiosis system and the strategies to make it happen. J. Clean. Prod. 15(13–14), 1253–1258 (2007)CrossRefGoogle Scholar
  32. 32.
    Corder, G.: Potential Synergy Opportunities in the Gladstone Industrial Region, in Project 3C1: Developing Local Synergies in the Gladstone Industrial Area, p. 68. Centre for Sustainable Resource Processing, Perth (2005)Google Scholar
  33. 33.
    Corder, G.D.: Final Project Report, in Project 3C1: Developing Local Synergies in the Gladstone Industrial Area, p. 47. Centre for Sustainable Resource Processing, Perth (2008)Google Scholar
  34. 34.
    Martin, S., et al.: Eco-industrial Parks: A Case Study and Analysis of Economic, Environmental, Technical, and Regulatory Issues. In: Doyle, B. (ed.). U.S. EPA, Washington, DC (1996)Google Scholar
  35. 35.
    Cote, R.P.: New Way of Thinking About Industrial Systems With Nature as Model, in Canadian Pollution Prevention Roundtable. Charlottetown, PEI (2009)Google Scholar
  36. 36.
    Hashimoto, S., et al.: Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki. Resour. Conserv. Recycl. 54(10), 704–710 (2010)CrossRefGoogle Scholar
  37. 37.
    Korhonen, J., Snäkin, J.-P.: Analysing the evolution of industrial ecosystems: Concepts and application. Ecol. Econ. 52(2), 169–186 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of BiologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations