Skip to main content

Abstract

Earth life is greatly dependent on function and properties of water. A major threat to agricultural production is drought. Drought is a multidimensional stress and world spread problem that cause substantial losses by influencing the yield and production seriously. Tolerance to drought is a principal target for molecular strategies to crop enhancement. The plants ability to resist drought conditions is important for agricultural production globally. Current progress in responses to drought has been made in our comprehending of signal transduction, gene expression and transcriptional regulation in plants. Plants have developed a diverse variety of drought resistance mechanisms in front of water limiting conditions at physiological, metabolic and molecular level. Water uptake and development of healthier root, WUE, osmotic adjustment, and mineral nutrients also have important consequences on adaptation to drought. This chapter is organized around the concept of “drought tolerance in rice and maize crops”. Some innovative tactics are discussed. This chapter summarizes different aspects of crop breeding for drought tolerance and analyses how conventional breeding, genetics, biotechnology tools, micro arrays, MAS, QTL, bioinformatics and transgenic crops as well as mineral nutrients, plant growth regulations can participate to advancing the emancipation of drought-resistant rice and maize cultivars. We foresee the functional and genetic of drought resistance based on such premises. Novel opportunities for tailoring new genotypes will be generated ‘by design’. Harnessing the genomics-assisted breeding’s potential will need an integrated knowledge of physiological and molecular processes and a multidisciplinary approach influencing drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

WHO:

World health organization

ROS:

Reactive oxygen specie

IAA:

Indole-3-Acetic Acid

GA3 :

Gibberellic Acid

BL:

Brassinolide

IRRI:

The International Rice Research Institute

CIMMYT:

The International Maize and Wheat Improvement Center

IITA:

International Institute for Tropical Agriculture

SSA:

Sub-Saharan Africa

PGRs:

Plant growth regulators

CIAT:

The International Center for Tropical Agriculture

ABA:

Abscisic acid

CO2 :

Carbon dioxide

GB:

Glycine betaine

DI:

Deficit irrigation

WUE:

Water-use efficiency

EUW:

Effective use of water

RNA:

Ribonucleic Acid

DNA:

Deoxyribonucleic Acid

OA:

Osmotic adjustment

ATP:

Adenosine triphosphate

QTL:

Quantitative trait loci

eQTL:

Expression quantitative trait loci

SNP:

Single nucleotide polymorphism

MAS:

Marker-assisted selection

DPE:

Drought-prone environments

TE:

Transpiration efficiency

HI:

Harvest index

WU:

Water uptake

IRFGC:

International Rice Functional Genomics Consortium

ICIS:

International Crop Information System

GCP:

Generation Challenge Program

TF:

Transcription factors

GST:

Glutathione-S-transferases

References

  • Afzal, Z., T. Howton, Y. Sun, and M.S. Mukhtar. 2016. The roles of aquaporins in plant stress responses. Journal of Developmental Biology 4: 9.

    Article  Google Scholar 

  • Ahmadi, A., and D.A. Baker. 2001. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation 35: 81–91.

    Article  CAS  Google Scholar 

  • Alscher, R.G., N. Erturk, and L.S. HEATH. 2002. Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53: 133–141.

    Article  Google Scholar 

  • Ashraf, M., N.A. Akram, F. Al-Qurainy, and M.R. Foolad. 2011. Drought tolerance: Roles of organic osmolytes growth regulators, and mineral nutrients. Advances in Agronomy 111: 249–296.

    Article  CAS  Google Scholar 

  • Atkin, O.K., and D. Macherel. 2009. The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany 103: 581–597.

    Article  CAS  Google Scholar 

  • Atteya, A.M. 2003. Alteration of water relations and yield of corn genotypes in response to drought stress, Bulg. Journal of Plant Physiology 29: 63–76.

    Google Scholar 

  • Banziger, M., P. Setimela, D. Hodson, and V. Biniganavile. 2006. Breeding for improved abiotic stress tolerance in maize adapted to Southern Africa. Agriculture Water Management 80: 212–224.

    Article  Google Scholar 

  • Basnayake, J., S. Fukai, and M. Ouk. 2006. Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. In Proceedings of the Australian Agronomy conference, Australian Society of Agronomy, Birsbane, Australia.

    Google Scholar 

  • Battaglia, M., Y. Olvera-Carrillo, A. Garciarrubio, F. Campos, and A.A. Covarrubias. 2008. The enigmatic LEA proteins and other hydrophilins. Plant Physiology 148: 6–24.

    Article  CAS  Google Scholar 

  • Bernier, J., A. Kumar, R. Venuprased, S. Impa, and R.P. Gowdaa. 2009. The large effect drought-resistance QTL qtl12.1 increases water uptake in upland rice. Field Crops Research 110: 39–46.

    Article  Google Scholar 

  • Bhatnagar-Mathur, P., V. Vadez, and K.K. Sharma. 2008. Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Reports 27: 411–424.

    Article  CAS  Google Scholar 

  • Blum, A. 2009. Effective use of water (EUW) and water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112: 119–123.

    Article  Google Scholar 

  • Chaves, M.M., and M.M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany 55: 2365–2384.

    Article  CAS  Google Scholar 

  • Chaves, M.M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany 103: 551–560.

    Article  CAS  Google Scholar 

  • Chen, M., Q.Y. Wang, X.G. Cheng, Z.S. XU, and L.C. Li. 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemistry Biophysics Research Communication 353: 299–305.

    Article  CAS  Google Scholar 

  • Chimenti, C.A., M. Marcantonio, and A.J. Hall. 2006. Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Research 95: 305–315.

    Article  Google Scholar 

  • FAO. 2006. World agriculture: Towards 2030/2050, Interim report. Global Perspective Studies Unit, Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO. 2007. Commission on genetic resources for food and agriculture. Food and Agriculture Organization, Rome. http://www.fao.org/ag/cgrfa/itpgr.htm. (January 2007)

  • FAOSTAT, Data. 2013. Food and agriculture organization of the United Nations. Statistical database.

    Google Scholar 

  • Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Agronomy Sustainable Development 29: 185–212.

    Article  Google Scholar 

  • Goff, S.A., D. Ricke, T.H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange, T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T. Miguel, U. Paszkowski, S. Zhang, M. Colbert, W.L. Sun, L. Chen, B. Cooper, S. Park, T.C. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant, and S. Briggs. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

    Article  CAS  Google Scholar 

  • Gorantla, M., P.R. Babu, V.B.R. Lachagari, F.A. Feltus, A.H. Paterson, and A.R. Reddy. 2005. Functional genomics of drought stress response in rice: Transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22). Current Science 89: 496–514.

    CAS  Google Scholar 

  • Hajheidari, M., M. Abdollahian-Noghabi, H. Askari, M. Heidari, S.Y. Sadeghian, E.S. Ober, and G.H. Salekdeh. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics 5: 950–960.

    Article  CAS  Google Scholar 

  • Hazen, S., M.S. Pathan, A. Sanchez, I. Baxter, M. Dunn, B. Estes, H.-S. Chang, T. Zhu, J. Kreps, and H. Nguyen. 2005. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Functional & Integrative Genomics 5: 104–116.

    Article  CAS  Google Scholar 

  • Hong-Bo, S., C. Xiao-Yan, C. Li-Ye, Z. Xi-Ning, W. Gangh, Y. Yong-Bing, Z. Chang-Xing, and H. Zan-Min. 2006. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids and Surfaces. B, Biointerfaces 53: 113–119.

    Article  Google Scholar 

  • Huang, D., W. Wu, S.R. Abrams, and A.J. Cutler. 2008. The relationship of droughtrelated gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany 59: 2991–2997.

    Article  CAS  Google Scholar 

  • Ishitani, M., I. Rao, P. Wenzl, S. Beebe, and J. Tohme. 2004. Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: Drought and aluminum toxicity as case studies. Field Crops Research 90: 35–45.

    Article  Google Scholar 

  • Jaleel, A.C., B. Sankar, P.V. Murali, M. Gomathinayagam, G.M.A. Lakshmanan, and R. Panneerselvam. 2008. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids Surface 62: 105–111.

    Article  CAS  Google Scholar 

  • Jansen, R.C. 2003. Studying complex biological systems using multifactorial perturbation. Nature Revolution in Genetics 4: 145–151.

    Article  CAS  Google Scholar 

  • Jansen, R.C., and J.P. Nap. 2001. Genetical genomics: The added value from segregation. Trends in Genetics 17: 88–391.

    Article  Google Scholar 

  • Kamara, A.Y., A. Menkir, B. Badu–Apraku, and O. Ibikunle. 2003. The influence of drought stress on growth, yield and yield components of selected maize genotypes. Journal of Agricultural Science 141: 43–50.

    Article  Google Scholar 

  • Kantar, M., Stuart J. Lucas, and H. Budak. 2011. Drought stress: Molecular genetics and genomics. Approaches Advances in Botanical Research 57: 445–493.

    Article  CAS  Google Scholar 

  • Kikuchi, S., K. Satoh, T. Nagata, N. Kawagashira, K. Doi, N. Kishimoto, J. Yazaki, M. Ishikawa, H. Yamada, H. Ooka, I. Hotta, K. Kojima, T. Namiki, E. Ohneda, W. Yahagi, K. Suzuki, C.J. Li, K. Ohtsuki, and T. Shishiki. 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376–379.

    Article  Google Scholar 

  • Lafitte, H.R., G. Yongsheng, S. Yan, and Z.K. Li. 2007. Whole plant responses, key processes, and adaptation to drought stress: The case of rice. Journal of Experimental Botany 58: 169–175.

    Article  CAS  Google Scholar 

  • Lawlor, D.W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275–294.

    Article  CAS  Google Scholar 

  • Lawlor, D.W., and W. Tezara. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Annals of Botany 103: 561–579.

    Article  CAS  Google Scholar 

  • Levi, A., L. Ovnat, A.H. Paterson, and Y. Saranga. 2009. Photosynthesis of cotton nearisogenic lines introgressed with QTLs for productivity and drought related traits. Plant Science 177: 88–96.

    Article  CAS  Google Scholar 

  • Martinez, V., T.C. Mestre, F. Rubio, A. Girones-Vilaplana, D.A. Moreno, R. Mittler, and R.M. Rivero. 2016. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in Plant Science 7: 838.

    Article  Google Scholar 

  • Monneveux, P., C. Sanchez, D. Beck, and G.O. Edmeades. 2006. Drought tolerance improvement in tropical maize source populations: Evidence of progress. Crop Science 46: 180–191.

    Article  Google Scholar 

  • Munne-Bosch, S., and J. Penuelas. 2003. Photo and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217: 758–766.

    Article  CAS  Google Scholar 

  • Ortiz, R., H. Braun, J. Crossa, J.H. Crouch, G. Davenport, J. Dixon, S. Dreisigacker, E. Duveiller, H.E. Zhonghu, H. Julio, K.J. Arun, K. Masahiro, P. Kosina, Y. Manes, M. Mezzalama, A. Morgounov, J. Murakami, J. Nicol, G. Ortiz Ferrara, I. Ortiz-Monasterio, T.S. Payne, R. Javier Pen, M.P. Reynolds, K.D. Sayre, R.C. Sharma, R.P. Singh, J. Wang, M. Warburton, H. Wu, and I. Masa. 2008. Wheat genetic resources enhancement by the international maize and wheat improvement center (CIMMYT). Genetic Resources in Crop Evolution 55: 1095–1140.

    Article  Google Scholar 

  • Pandey, S., and H. Bhandari. 2008. Drought: Economic costs and research implications. In Drought frontiers in rice: Crop improvement for increased rainfed production, ed. Serraj, R., Bennett, J., Hardy, B. World Scientific Publishing and Los Ba˜nos (Philippines): International Rice Research Institute, Singapore.

    Google Scholar 

  • Peleg, Z.V.I., H. Walia, and E. Blumwald. 2012. Integrating genomics and genetics to accelerate development of drought and salinity tolerant crops. Theoretical Applied Genetics 125(4): 625–645.

    Article  Google Scholar 

  • Plaut, Z. 2003. Plant exposure to water stress during specific growth stages, Encyclopedia of water science, 673–675. Encyclopedia of Water Science: Taylor & Francis.

    Google Scholar 

  • Quan, R., M. Shang, H. Zhang, Y. Zhao, and J. Zhang. 2004. Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal 2: 477–486.

    Article  CAS  Google Scholar 

  • Ray, I.M., A. Segovia-Lerma, and L.W. Murray. 2004. Diallel analysis of carbon isotope discrimination and its association with forage yield among nine historically recognized alfalfa germplasm. Crop Science 44: 1970–1975.

    Article  Google Scholar 

  • Reynolds, M., and R. Tuberosa. 2008. Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology 11: 171–179.

    Article  Google Scholar 

  • Ribaut, J.M., and M. Ragot. 2007. Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations and alternatives. Journal of Experimental Botany 58: 351–360.

    Article  CAS  Google Scholar 

  • Riccardi, F., P. Gazeau, M.P. Jacquemot, D. Vincent, and M. Zivy. 2004. Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiology Biochemistry 42: 1003–1011.

    Article  CAS  Google Scholar 

  • Rovere, L., M. Sudarshan, D. John, A.M. Pedro, G. Kamala, P.H. Dave, and F.V. Dagoberto. 2009. Economic and livelihood impacts of maize research in hill regions in Mexico and Nepal: Including a method for collecting and analyzing spatial data using Google Earth. http://ideas.repec.org/p/ags/cimmis/56090.html.

  • Samson, B.K., H. Hasan, and L.J. Wade. 2002. Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Research 76: 175–188.

    Article  Google Scholar 

  • Serraj, R., A. Kumar, K.L. McNally, I. Slamet-Loedin, R. Bruskiewich, R. Mauleon, J. Cairns, and R.J. Hijmans. 2009. Chapter 2 - Improvement of drought resistance in rice. In Advances in agronomy, ed. L.S. Donald, 41–99. Burlington: Academic Press.

    Google Scholar 

  • Sequera-Mutiozabal, M., A.F. Tiburcio, and R. Alcázar. 2016. Drought stress tolerance in relation to polyamine metabolism in plants. In Drought stress tolerance in plants, Physiology and Biochemistry, vol. 1, ed. A.M. Hossain, H.S. Wani, S. Bhattacharjee, J.D. Burritt, and P.L.-S. Tran, 267–286. Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Slama, I., C. Abdelly, A. Bouchereau, T. Flowers, and A. Savouré. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115(3): 433–447. mcu239.

    Article  Google Scholar 

  • Sonev, S., E. Todorovska, V. Avramova, S. Kolev, N. Abu-Mhadi, and N.K. Christov. 2009. Genomics assisted improvement of drought tolerance in maize: QTL approaches. Biotechnology 23: 1410–1413.

    Google Scholar 

  • Sreenivasulu, N., S.K. Sopory, and P.B. Kavi Kishor. 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388: 1–13c.

    Google Scholar 

  • Todaka, D., K. Shinozaki, and K. Yamaguchi-Shinozaki. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6: 84.

    Article  Google Scholar 

  • Tuberosa, R., and S. Salvi. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science 8: 405–412.

    Google Scholar 

  • Venuprasad, R., H.R. Lafitte, and G.N. Atlin. 2007. Response to direct selection for grain yield under drought stress in rice. Crop Science 47: 285–293.

    Article  Google Scholar 

  • Verslues, P.E. 2016. ABA and cytokinins: challenge and opportunity for plant stress research. Plant Molecular Biology: 1–12.

    Google Scholar 

  • Vinocur, B.A. 2005. Altman Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology 16: 123–132.

    Google Scholar 

  • Wang, H., and A. Yamauchi. 2006. Growth and function of roots under abiotic stress in soil. In Plant-environment interactions, 3rd ed, ed. B. Huang. New York: CRC Press.

    Google Scholar 

  • Waseem, M., A. Ali, M. Tahir, M.A. Nadeem, M. Ayub, A. Tanveer, R. Ahmad, and M. Hussain. 2011. Mechanism of drought tolerance in plant and its management through different methods continental. Journal of Agricultural Science 5(1): 10–25.

    Google Scholar 

  • Wu, W., and S. Cheng. 2014. Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research 165: 111–124.

    Article  Google Scholar 

  • Wu, R., and A. Garg. 2003. Engineering rice plants with trehalose-producing genes improves drought resistance under field conditions. Theoretical Applied Genetics 115: 35–46.

    Google Scholar 

  • Xoconostle-Cázares, B., F.A. Ramirez-Ortega, L. Flores-Elenes, and R. Ruiz-Medrano. 2010. Drought tolerance in crop plants. American Journal of Plant Physiology 5: 1–16.

    Article  Google Scholar 

  • Zheng, J., J. Fu, M. Gou, J. Huai, and Y. Liu. 2010. Genome-wide trancriptome analysis of two maize inbred lines under drought stress. Plant Molecular Biology 72: 407–421.

    Article  CAS  Google Scholar 

  • Zhou, Y., H.M. Lam, and J. Zhang. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany 58: 1207–1217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Aslam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aslam, Z., Khattak, J.Z.K., Ahmed, M. (2017). Drought Tolerance in Cereal Grain Crops Under Changing Climate. In: Ahmed, M., Stockle, C. (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-32059-5_9

Download citation

Publish with us

Policies and ethics