Skip to main content

Part of the book series: SpringerBriefs in Education ((BRIEFSEDUCAT))

  • 787 Accesses

Abstract

In this section, we report students’ responses on seven items (Pretest and Posttest), concept maps drawn by the students before and after the experimental treatment, and the interviews with the students. Excerpts from Control and Experimental Group students are provided in order to facilitate students’ understanding of the underlying issues. In general, the conceptual responses were more varied and indicate the extent to which students interacted with the experimental treatment or the context of a particular question. Rhetorical responses from Experimental Group students are not included as they were quite similar to those of the Control Group. This similarity between the rhetorical responses of both Control and Experimental Group students shows the difficulties involved in facilitating conceptual change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective, explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of Research in Science Teaching, 37, 295–317.

    Article  Google Scholar 

  • Alexander, P. A. (1992). Domain knowledge: Evolving issues and emerging concerns. Educational Psychologist, 27, 33–51.

    Article  Google Scholar 

  • Ausubel, D., Novak, J., & Hanesian, H. (1991). Psicología Educativa: Un punto de vista cognoscitivo. México, D.F.: Trillas.

    Google Scholar 

  • Caballero, A., & Ramos, F. (2001). Química: Teoría, problemario, auto evaluación (7th ed.). Caracas: Distribuidora Escolar.

    Google Scholar 

  • Dogan, N., & Abd-El-Khalick, F. (2008). Turkish grade 10 students’ and science teachers’ conceptions of nature of science: A national study. Journal of Research in Science Teaching, 45(10), 1083–1112.

    Article  Google Scholar 

  • Ehrenhaft, F. (1941). The microcoulomb experiment. Philosophy of Science, 8, 403–457.

    Article  Google Scholar 

  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam: Sense Publishers.

    Google Scholar 

  • Holton, G. (1969). Einstein and the ‘crucial’ experiment. American Journal of Physics, 37, 968–982.

    Article  Google Scholar 

  • Holton, G. (1988). On the hesitant rise of quantum physics research in the United States. In S. Goldberg & R. H. Stuewer (Eds.), The Michelson era in American science, 1870–1930 (pp. 177–205). New York: American Institute of Physics.

    Google Scholar 

  • Holton, G. (1999). Personal communication to the first author, April 29.

    Google Scholar 

  • Holton, G. (2014). Personal communication to the first author, August 3.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–195). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Lederman, N. G. (2004). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 301–317). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Lederman, N. G., & O’Malley, M. (1990). Students’ perceptions of tentativeness in science: Development, use, and sources of change. Science Education, 74, 225–239.

    Article  Google Scholar 

  • López, J. B. (2006). El enlace covalente y el experimento de Millikan, desde el punto de vista de la historia y filosofía de la ciencia, en libros de texto del primer año de ciencias del ciclo diversificado. Master of Science thesis (Chemistry education). Universidad de Oriente, Cumaná, Venezuela.

    Google Scholar 

  • Machamer, P., Pera, M., & Baltas, A. (2000). Scientific controversies: An introduction. In P. Machamer, M. Pera, & A. Baltas (Eds.), Scientific controversies: Philosophical and historical perspectives (pp. 3–17). New York: Oxford University Press.

    Google Scholar 

  • McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2), 249–263.

    Article  Google Scholar 

  • McComas, W. F., Almazroa, H., & Clough, M. P. (1998). The role and character of the nature of science in science education. Science & Education, 7, 511–532.

    Article  Google Scholar 

  • Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: A rational reconstruction of structure of the atom and its implications for chemistry textbooks. Science Education, 82, 527–552.

    Article  Google Scholar 

  • Niaz, M. (2000). The oil drop experiment: A rational reconstruction of the Millikan-Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37(5), 480–508.

    Article  Google Scholar 

  • Niaz, M. (2005). An appraisal of the controversial nature of the oil drop experiment: Is closure possible? British Journal for the Philosophy of Science, 56, 681–702.

    Article  Google Scholar 

  • Niaz, M. (2009). Critical appraisal of physical science as a human enterprise: Dynamics of scientific progress. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Niaz, M. (2015). Myth 19: That the Millikan oil-drop experiment was simple and straightforward. In R. L. Numbers & K. Kampourakis (Eds.), Newton’s apple and other myths about science (pp. 157–163). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Niaz, M., & Coştu, B. (2013). Analysis of Turkish general chemistry textbooks based on a history and philosophy of science perspective. In M. S. Khine (Ed.), Critical analysis of science textbooks: Evaluating instructional effectiveness (pp. 199–218). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Niaz, M., Herron, J. D., & Phelps, A. J. (1991). The effect of context on the translation of sentences into algebraic equations. Journal of Chemical Education, 68, 306–309.

    Article  Google Scholar 

  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27(10), 937–949.

    Article  Google Scholar 

  • Novak, J., & Gowin, B. (1988). Aprendiendo a aprender. Madrid: Martínez Roca.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40, 692–720.

    Article  Google Scholar 

  • Perl, M. (2007). A contrarian view of how to develop creativity in science and engineering. Paper presented at The Eighth Olympiad of the Mind, The National Academies, Washington, DC., November (SLAC-PUB-12850).

    Google Scholar 

  • Perl, M., & Lee, E. R. (1997). The search for elementary particles with fractional electric charge and the philosophy of speculative experiments. American Journal of Physics, 65, 698–706.

    Article  Google Scholar 

  • Perl, M., Lee, E. R., & Loomba, D. (2004). A brief review of the search for isolatable fractional charge elementary particles. Modern Physics Letters A, 19, 2595–2610.

    Article  Google Scholar 

  • Schwab, J. J. (1962). The teaching of science as enquiry. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Schwab, J. J. (1974). The concept of the structure of a discipline. In E. W. Eisner & E. Vallance (Eds.), Conflicting conceptions of curriculum (pp. 162–175). Berkeley, CA: McCutchan Publishing Corp.

    Google Scholar 

  • Smith, M. U., & Scharmann, L. C. (1999). Defining versus describing the nature of science: A pragmatic analysis for classroom teachers and science educators. Science Education, 83(4), 493–509.

    Article  Google Scholar 

  • Wilson, D. (1983). Rutherford: Simple genius. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Niaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Niaz, M., Rivas, M. (2016). Results and Discussion. In: Students’ Understanding of Research Methodology in the Context of Dynamics of Scientific Progress. SpringerBriefs in Education. Springer, Cham. https://doi.org/10.1007/978-3-319-32040-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32040-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32039-7

  • Online ISBN: 978-3-319-32040-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics