Privacy Preserving Data Mining for Deliberative Consultations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9648)

Abstract

In deliberative consultations, which utilise electronic surveys as a tool to obtain information from residents, preserving privacy plays an important role. In this paper investigation of a possibility of privacy preserving data mining techniques application in deliberative consultations has been conducted. Three main privacy preserving techniques; namely, heuristic-based, reconstruction-based, and cryptography-based have been analysed and a setup for online surveys performed within deliberative consultations has been proposed.

This work can be useful for designers and administrators in the assessment of the privacy risks they face with a system for deliberative consultations. It can also be used in the process of privacy preserving incorporation in such a system in order to help minimise privacy risks to users.

Keywords

Privacy preserving data mining Deliberative consultations Reconstruction-based technique Cryptography-based technique Heuristic-based technique 

References

  1. 1.
    Albrecht, S.: E-consultations: a review of current practice and a proposal for opening up the process. In: Tambouris, E., Macintosh, A., Sæbø, Ø. (eds.) ePart 2012. LNCS, vol. 7444, pp. 13–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Li, X., Yan, Z., Zhang, P.: A review on privacy-preserving data mining. In: 14th IEEE International Conference on Computer and Information Technology, CIT 2014, Xi’an, China, 11–13 September 2014, pp. 769–774. IEEE (2014)Google Scholar
  3. 3.
    Aggarwal, C.C.: Data Mining - The Textbook. Springer, Switzerland (2015)MATHGoogle Scholar
  4. 4.
    Huai, M., Huang, L., Yang, W., Li, L., Qi, M.: Privacy-preserving naive bayes classification. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS, vol. 9403, pp. 627–638. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25159-2_57 CrossRefGoogle Scholar
  5. 5.
    Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving svm classification. Knowl. Inf. Syst. 14(2), 161–178 (2008)CrossRefGoogle Scholar
  6. 6.
    Keyvanpour, M.R., Moradi, S.S.: A perturbation method based on singular value decomposition and feature selection for privacy preserving data mining. IJDWM 10(1), 55–76 (2014)Google Scholar
  7. 7.
    Andruszkiewicz, P.: Frequent sets discovery in privacy preserving quantitative association rules mining. In: Onieva, E., Santos, I., Osaba, E., Quintian, H., Corchado, E. (eds.) HAIS 2015. LNCS, vol. 9121, pp. 3–15. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Andruszkiewicz, P.: Hierarchical combining of classifiers in privacy preserving data mining. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 573–584. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Chen, K., Liu, L.: A survey of multiplicative perturbation for privacy-preserving data mining, [14], pp.157–181Google Scholar
  10. 10.
    Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: ICDM, pp. 589–592. IEEE Computer Society (2005)Google Scholar
  11. 11.
    Liu, K., Giannella, C.M., Kargupta, H.: An attacker’s view of distance preserving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving olap. In: SIGMOD 2005, Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 251–262. ACM, New York (2005)Google Scholar
  13. 13.
    Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of association rules. SIGMOD Rec. 30(4), 45–54 (2001)CrossRefGoogle Scholar
  14. 14.
    Aggarwal, C.C., Yu, P.S. (eds.): Privacy-Preserving Data Mining - Models and Algorithms. Advances in Database Systems, vol. 34. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Domingo-ferrer, J., Mateo-sanz, J.M.: On resampling for statistical confidentiality in contingency tables. Comput. Math. Appl. 38, 13–32 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Atallah, M.J., Bertino, E., Elmagarmid, A.K., Ibrahim, M., Verykios, V.S.: Disclosure limitation of sensitive rules. In: Proceedings of the IEEE Knowledge and Data Engineering Workshop, pp. 45–52 (1999)Google Scholar
  17. 17.
    Weng, C.C., Chen, S.T., Lo, H.C.: A novel algorithm for completely hiding sensitive association rules. In: Pan, J.S., Abraham, A., Chang, C.C. (eds.) ISDA, vol. 3, pp. 202–208. IEEE Computer Society (2008)Google Scholar
  18. 18.
    Li, X., Liu, Z., Zuo, C.: Hiding association rules based on relative-non-sensitive frequent itemsets. In: Baciu, G., Wang, Y., Yao, Y., Kinsner, W., Chan, K., Zadeh, L.A. (eds.) IEEE ICCI, pp. 384–389. IEEE Computer Society (2009)Google Scholar
  19. 19.
    Modi, C.N., Rao, U.P., Patel, D.R.: An efficient solution for privacy preserving association rule mining. Int. J. Comput. Netw. Secur. 2(5), 79–85 (2010)Google Scholar
  20. 20.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167. IEEE (1986)Google Scholar
  21. 21.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  22. 22.
    Patsakis, C., Laird, P., Clear, M., Bouroche, M., Solanas, A.: Interoperable privacy-aware e-participation within smart cities. Computer 48(1), 52–58 (2015)CrossRefGoogle Scholar
  23. 23.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)Google Scholar
  24. 24.
    Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: SDM (2004)Google Scholar
  25. 25.
    Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: KDD 2002, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Press, pp. 217–228. ACM, New York (2002)Google Scholar
  26. 26.
    Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer data without loss of accuracy. In: SDM (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations