Hybrid Intelligent Model for Fault Detection of a Lithium Iron Phosphate Power Cell Used in Electric Vehicles

  • Héctor Quintián
  • José-Luis Casteleiro-Roca
  • Francisco Javier Perez-Castelo
  • José Luis Calvo-RolleEmail author
  • Emilio Corchado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9648)


Currently, the electrical mobility and the intermittent power generation facilities problem are two of the main purposes of batteries. Batteries, in general terms, have a complex behavior. Due to the usual electrochemical nature of batteries, several tests are made to check their performance, and it is very useful to know a priori how they are working in each case. By checking the battery temperatures for a specific voltage and current value, this work describes a hybrid intelligent model aimed at making fault detection of a LFP (Lithium Iron Phosphate - LiFePO4) power cell type, used in Electric Vehicles. A large set of operating points is obtained from a real system to create the dataset for the operation range of the power cell. Clusters of the different behavior zones have been obtained to accomplish the solution. Some simple regression methods have been applied for each cluster. Polynomial Regression, Artificial Neural Networks and Support Vector Regression were the combined techniques to develop the hybrid intelligent model proposed. The novel hybrid model allows to be achieved good results in all the operating range, detecting all the faults tested.


Power cell Fault detection Battery Clustering Artificial neural networks Polynomial regression LS-SVR 


  1. 1.
    Chukwuka, C., Folly, K.: Batteries and super-capacitors. In: 2012 IEEE Power Engineering Society Conference and Exposition in Africa (PowerAfrica), pp. 1–6, July 2012Google Scholar
  2. 2.
    Qian, H., Zhang, J., Lai, J.S.: A grid-tie battery energy storage system. In: 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–5, June 2010Google Scholar
  3. 3.
    Chaturvedi, N., Klein, R., Christensen, J., Ahmed, J., Kojic, A.: Modeling, estimation, and control challenges for lithium-ion batteries. In: Proceedings of the American Control Conference (ACC), pp. 1997–2002, June 2010Google Scholar
  4. 4.
    Vukosavic, S.: Electrical Machines. Power Electronics and Power Systems. Springer, New York (2012)Google Scholar
  5. 5.
    Konig, O., Jakubek, S., Prochart, G.: Battery impedance emulation for hybrid and electric powertrain testing. In: 2012 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 627–632, October 2012Google Scholar
  6. 6.
    Fernández-Serantes, L.A., Estrada Vázquez, R., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 561–572. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L., Corchado, E., del Carmen Meizoso-López, M., Piñón-Pazos, A.: An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Log. (2015, in press)Google Scholar
  8. 8.
    Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L., Corchado, E., Meizoso-López, M.C.: Intelligent model for fault detection on geothermal exchanger of a heat pump. In: Herrero, A., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 237–247. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-López, M., Piñón-Pazos, A., Rodríguez-Gómez, B.: Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump. Neurocomputing 150, 90–98 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Canova, M.: Fault detection and isolation of automotive air conditioning systems using first principle models. Control Eng. Pract. 43, 49–58 (2015)CrossRefGoogle Scholar
  11. 11.
    Farina, M., Osto, E., Perizzato, A., Piroddi, L., Scattolini, R.: Fault detection and isolation of bearings in a drive reducer of a hot steel rolling mill. Control Eng. Pract. 39, 35–44 (2015)CrossRefGoogle Scholar
  12. 12.
    Mark, J., Goldberg, M.A.: Multiple regression analysis and mass assessment: a review of the issues. Apprais. J. 56(1), 89 (1988)Google Scholar
  13. 13.
    Jin, R., Cho, K., Hyun, C., Son, M.: MRA-based revised CBR model for cost prediction in the early stage of construction projects. Expert Syst. Appl. 39(5), 5214–5222 (2012)CrossRefGoogle Scholar
  14. 14.
    Ho, L.H., Feng, S.Y., Lee, Y.C., Yen, T.M.: Using modified IPA to evaluate suppliers performance: multiple regression analysis and DEMATEL approach. Expert Syst. Appl. 39(8), 7102–7109 (2012)CrossRefGoogle Scholar
  15. 15.
    Vilar-Martinez, X.M., Montero-Sousa, J.A., Luis Calvo-Rolle, J., Casteleiro-Roca, J.L.: Expert system development to assist on the verification of TACAN system performance. Dyna 89(1), 112–121 (2014)Google Scholar
  16. 16.
    Cho, Y., Awbi, H.B.: A study of the effect of heat source location in a ventilated room using multiple regression analysis. Build. Environ. 42(5), 2072–2082 (2007)CrossRefGoogle Scholar
  17. 17.
    Casteleiro-Roca, J.L., Pérez, J.A.M., Piñón-Pazos, A.J., Calvo-Rolle, J.L., Corchado, E.: Modeling the Electromyogram (EMG) of Patients Undergoing Anesthesia During Surgery. 10th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 273–283. Springer, Switzerland (2015)Google Scholar
  18. 18.
    Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-Lopez, M., Pin-Pazos, A., Rodrguez-Gmez, B.: New approach for the QCM sensors characterization. Sens. Actuators A Phys. 207, 1–9 (2014)CrossRefGoogle Scholar
  19. 19.
    Reboso, J., Mendez, J., Reboso, H., León, A.: Design and implementation of a closed-loop control system for infusion of propofol guided by bispectral index (BIS). Acta Anaesthesiologica Scandinavica 56(8), 1032–1041 (2012)CrossRefGoogle Scholar
  20. 20.
    Martín-Mateos, I., Méndez Pérez, J., Reboso, J., León, A.: Modelling propofol pharmacodynamics using BIS-guided anaesthesia. Anaesthesia 68(11), 1132–1140 (2013)CrossRefGoogle Scholar
  21. 21.
    Nieves-Acedo, J., Santos-Grueiro, I., Garcia-Bringas, P.: Enhancing the prediction stage of a model predictive control systems through meta-classifiers. Dyna 88(3), 290–298 (2013)CrossRefGoogle Scholar
  22. 22.
    Jang, H., Topal, E.: Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network. Tunn. Undergr. Space Technol. 38, 161–169 (2013)CrossRefGoogle Scholar
  23. 23.
    Alvarez-Huerta, A., Gonzalez-Miguelez, R., Garcia-Metola, D., Noriega-Gonzalez, A.: Failure detection and prediction in wind turbines by using scada data. Dyna 86(4), 467–473 (2011)CrossRefGoogle Scholar
  24. 24.
    Martínez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A.: Efficiency of local models ensembles for time series prediction. Expert Syst. Appl. 38(6), 6884–6894 (2011)CrossRefGoogle Scholar
  25. 25.
    Cherif, A., Cardot, H., Boné, R.: SOM time series clustering and prediction with recurrent neural networks. Neurocomputing 74(11), 1936–1944 (2011)CrossRefGoogle Scholar
  26. 26.
    Ghaseminezhad, M.H., Karami, A.: A novel self-organizing map (SOM) neural network for discrete groups of data clustering. Appl. Soft Comput. 11(4), 3771–3778 (2011)CrossRefGoogle Scholar
  27. 27.
    Crespo-Ramos, M.J., Machón-González, I., López-García, H., Calvo-Rolle, J.L.: Detection of locally relevant variables using SOM-NG algorithm. Eng. Appl. Artif. Intell. 26(8), 1992–2000 (2013)CrossRefGoogle Scholar
  28. 28.
    Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián, H., Meizoso-Lopez, M.C.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Syst. Appl. 40(13), 5188–5196 (2013)CrossRefGoogle Scholar
  29. 29.
    Quintián, H., Calvo-Rolle, J.L., Corchado, E.: A hybrid regression system based on local models for solar energy prediction. Informatica 25(2), 265–282 (2014)CrossRefGoogle Scholar
  30. 30.
    Rolle, J., Gonzalez, I., Garcia, H.: Neuro-robust controller for non-linear systems. Dyna 86(3), 308–317 (2011)CrossRefGoogle Scholar
  31. 31.
    Osborn, J., Juez, F.J.D.C., Guzman, D., Butterley, T., Myers, R., Guesalaga, A., Laine, J.: Using artificial neural networks for open-loop tomography. Optics express 20(3), 2420–2434 (2012)CrossRefGoogle Scholar
  32. 32.
    Guzmán, D., de Cos Juez, F.J., Myers, R., Guesalaga, A., Lasheras, F.S.: Modeling a mems deformable mirror using non-parametric estimation techniques. Opt. Express 18(20), 21356–21369 (2010)CrossRefGoogle Scholar
  33. 33.
    Moretón, H.A., Rolle, J.C., García, I., Alvarez, A.A.: Formalization and practical implementation of a conceptual model for PID controller tuning. Asian J. Control 13(6), 773–784 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    PNGV Battery Test Manual (2001). (March 2016)
  35. 35.
    LiFeBATT X-1P 8Ah 38123 Cell (2011). (March 2016)
  36. 36.
    Qin, A., Suganthan, P.: Enhanced neural gas network for prototype-based clustering. Pattern Recogn. 38(8), 1275–1288 (2005)CrossRefGoogle Scholar
  37. 37.
    Ghaseminezhad, M.H., Karami, A.: A novel self-organizing map (SOM) neural network for discrete groups of data clustering. Appl. Soft Comput. 11(4), 3771–3778 (2011)CrossRefGoogle Scholar
  38. 38.
    Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(1–3), 18–41 (2005)CrossRefGoogle Scholar
  39. 39.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)zbMATHGoogle Scholar
  40. 40.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  41. 41.
    Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(1–3), 18–41 (2005)CrossRefGoogle Scholar
  42. 42.
    Li, Y., Shao, X., Cai, W.: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72(1), 217–222 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Héctor Quintián
    • 1
  • José-Luis Casteleiro-Roca
    • 2
  • Francisco Javier Perez-Castelo
    • 2
  • José Luis Calvo-Rolle
    • 2
    Email author
  • Emilio Corchado
    • 1
  1. 1.Departamento de Informática y AutomáticaUniversity of SalamancaSalamancaSpain
  2. 2.Departamento de Ingeniería IndustrialUniversity of A CoruñaFerrolSpain

Personalised recommendations