Skip to main content

TRIQ: A Comprehensive Evaluation Measure for Triclustering Algorithms

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9648)

Abstract

Triclustering has shown to be a valuable tool for the analysis of microarray data since its appearance as an improvement of classical clustering and biclustering techniques. Triclustering relaxes the constraints for grouping and allows genes to be evaluated under a subset of experimental conditions and a subset of time points simultaneously. The authors previously presented a genetic algorithm, TriGen, that finds triclusters of gene expression dasta. They also defined three different fitness functions for TriGen: \(MSR_{3D}\), LSL and MSL. In order to asses the results obtained by application of TriGen, a validity measure needs to be defined. Therefore, we present TRIQ, a validity measure which combines information from three different sources: (1) correlation among genes, conditions and times, (2) graphic validation of the patterns extracted and (3) functional annotations for the genes extracted.

Keywords

  • Triclustering
  • Validity measure
  • Genetic algorithms
  • Microarrays

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32034-2_56
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32034-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    CrossRef  Google Scholar 

  2. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991–D995 (2013)

    CrossRef  Google Scholar 

  3. Bauer, S., Grossmann, S., Vingron, M., Robinson, P.N.: Ontologizer 2.0–a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14), 1650–1651 (2008)

    CrossRef  Google Scholar 

  4. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing, pp. 1–4 (2009)

    Google Scholar 

  5. Bunt, J., Hasselt, N.E., Zwijnenburg, D.A., Hamdi, M., Koster, J., Versteeg, R., Kool, M.: OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Cancer 131(2), E21–E32 (2012)

    CrossRef  Google Scholar 

  6. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)

    Google Scholar 

  7. Dickison, V.M., Richmond, A.M., Abu-Irqeba, A., Martak, J.G., Hoge, S.C.E., Brooks, M.J., Othman, M.I., Khanna, R., Mears, A.J., Chowdhury, A.Y., Swaroop, A., Ogilvie, J.M.: A role for prenylated rab acceptor 1 in vertebrate photoreceptor development. BMC Neurosci. 13(1), ID152 (2012)

    CrossRef  Google Scholar 

  8. Freudenberg, J.M., Joshi, V.K., Hu, Z., Medvedovic, M.: Clean: clustering enrichment analysis. BMC Bioinformatics 10(1), 234 (2009)

    CrossRef  Google Scholar 

  9. Gutiérrez-Avilés, D., Rubio-Escudero, C.: Mining 3D patterns from gene expression temporal data: a new tricluster evaluation measure. Sci. World J. 1–16, 2014 (2014)

    Google Scholar 

  10. Gutiérrez-Avilés, D., Rubio-Escudero, C.: MSL: a measure to evaluate three-dimensional patterns in gene expression data. Evol. Bioinform. 11, 121–135 (2015)

    CrossRef  Google Scholar 

  11. Gutiérrez-Avilés, D., Rubio-Escudero, C., Martínez-Álvarez, F., Riquelme, J.C.: TriGen: a genetic algorithm to mine triclusters in temporal gene expression data. Neurocomputing 132, 42–53 (2014)

    CrossRef  Google Scholar 

  12. Gutiérrez-Avilés, D., Rubio-escudero, C.: L.S.L: a new measure to evaluate triclusters. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 30–37 (2014)

    Google Scholar 

  13. Hauke, J., Kossowski, T.: Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae 30(2), 87–93 (2011)

    CrossRef  Google Scholar 

  14. Hu, Z., Bhatnagar, R.: Algorithm for discovering low-variance 3-clusters from real-valued datasets. In: IEEE International Conference on Data Mining, pp. 236–245 (2010)

    Google Scholar 

  15. Jiang, H., Zhou, S., Guan, J., Zheng, Y.: gTRICLUSTER: a more general and effective 3D clustering algorithm for gene-sample-time microarray data. In: Li, J., Yang, Q., Tan, A.-H. (eds.) BioDM 2006. LNCS (LNBI), vol. 3916, pp. 48–59. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  16. Liu, J., Li, Z., Hu, X., Chen, Y.: Multi-objective evolutionary algorithm for mining 3D clusters in gene-sample-time microarray data. In: 2008 IEEE International Conference on Granular Computing, No. 60573057, pp. 442–447. IEEE, August 2008

    Google Scholar 

  17. Liu, Y.-C., Lee, C.-H., Chen, W.-C., Shin, J.W., Hsu, H.-H., Tseng, V.S.: A novel method for mining temporally dependent association rules in three-dimensional microarray datasets. In: 2010 International Computer Symposium (ICS), pp. 759–764. IEEE (2010)

    Google Scholar 

  18. Romero-Zaliz, R.C., Rubio-Escudero, C., Cobb, J.P., Herrera, F., Cordón, O., Zwir, I.: A multiobjective evolutionary conceptual clustering methodology for gene annotation within structural databases: a case of study on the gene ontology database. IEEE Trans. Evol. Comput. 12(6), 679–701 (2008)

    CrossRef  Google Scholar 

  19. Rubio-Escudero, C., Martínez-Álvarez, F., Romero-Zaliz, R.C., Zwir, I.: Classification of gene expression profiles: comparison of k-means and expectation maximization algorithms. In: Proceedings of IEEE International Conference on Hybrid Intelligent Systems, pp. 831–836 (2008)

    Google Scholar 

  20. Spearman, C.: Correlation calculated from faulty data. Br. J. Psychol. 1904–1920 3(3), 271–295 (1910)

    Google Scholar 

  21. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    CrossRef  Google Scholar 

  22. Xu, X., Lu, Y., Tan, K.L., Tung, A.K.H.: Finding time-lagged 3D clusters. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 445–456 (2009)

    Google Scholar 

  23. Zhao, L., Zaki, M.J.: triCluster: an effective algorithm for mining coherent clusters in 3D microarray data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 694–705 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors thank financial support by the Spanish Ministry of Science and Technology, projects TIN2011-28956-C02-02 and TIN2014-55894-C2-1-R and Junta de Andalucía’s project P12-TIC-7528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Rubio-Escudero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gutiérrez-Avilés, D., Rubio-Escudero, C. (2016). TRIQ: A Comprehensive Evaluation Measure for Triclustering Algorithms. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)