Abstract
Triclustering has shown to be a valuable tool for the analysis of microarray data since its appearance as an improvement of classical clustering and biclustering techniques. Triclustering relaxes the constraints for grouping and allows genes to be evaluated under a subset of experimental conditions and a subset of time points simultaneously. The authors previously presented a genetic algorithm, TriGen, that finds triclusters of gene expression dasta. They also defined three different fitness functions for TriGen: \(MSR_{3D}\), LSL and MSL. In order to asses the results obtained by application of TriGen, a validity measure needs to be defined. Therefore, we present TRIQ, a validity measure which combines information from three different sources: (1) correlation among genes, conditions and times, (2) graphic validation of the patterns extracted and (3) functional annotations for the genes extracted.
Keywords
- Triclustering
- Validity measure
- Genetic algorithms
- Microarrays
This is a preview of subscription content, access via your institution.
Buying options

References
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)
Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991–D995 (2013)
Bauer, S., Grossmann, S., Vingron, M., Robinson, P.N.: Ontologizer 2.0–a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14), 1650–1651 (2008)
Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing, pp. 1–4 (2009)
Bunt, J., Hasselt, N.E., Zwijnenburg, D.A., Hamdi, M., Koster, J., Versteeg, R., Kool, M.: OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Cancer 131(2), E21–E32 (2012)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)
Dickison, V.M., Richmond, A.M., Abu-Irqeba, A., Martak, J.G., Hoge, S.C.E., Brooks, M.J., Othman, M.I., Khanna, R., Mears, A.J., Chowdhury, A.Y., Swaroop, A., Ogilvie, J.M.: A role for prenylated rab acceptor 1 in vertebrate photoreceptor development. BMC Neurosci. 13(1), ID152 (2012)
Freudenberg, J.M., Joshi, V.K., Hu, Z., Medvedovic, M.: Clean: clustering enrichment analysis. BMC Bioinformatics 10(1), 234 (2009)
Gutiérrez-Avilés, D., Rubio-Escudero, C.: Mining 3D patterns from gene expression temporal data: a new tricluster evaluation measure. Sci. World J. 1–16, 2014 (2014)
Gutiérrez-Avilés, D., Rubio-Escudero, C.: MSL: a measure to evaluate three-dimensional patterns in gene expression data. Evol. Bioinform. 11, 121–135 (2015)
Gutiérrez-Avilés, D., Rubio-Escudero, C., Martínez-Álvarez, F., Riquelme, J.C.: TriGen: a genetic algorithm to mine triclusters in temporal gene expression data. Neurocomputing 132, 42–53 (2014)
Gutiérrez-Avilés, D., Rubio-escudero, C.: L.S.L: a new measure to evaluate triclusters. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 30–37 (2014)
Hauke, J., Kossowski, T.: Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae 30(2), 87–93 (2011)
Hu, Z., Bhatnagar, R.: Algorithm for discovering low-variance 3-clusters from real-valued datasets. In: IEEE International Conference on Data Mining, pp. 236–245 (2010)
Jiang, H., Zhou, S., Guan, J., Zheng, Y.: gTRICLUSTER: a more general and effective 3D clustering algorithm for gene-sample-time microarray data. In: Li, J., Yang, Q., Tan, A.-H. (eds.) BioDM 2006. LNCS (LNBI), vol. 3916, pp. 48–59. Springer, Heidelberg (2006)
Liu, J., Li, Z., Hu, X., Chen, Y.: Multi-objective evolutionary algorithm for mining 3D clusters in gene-sample-time microarray data. In: 2008 IEEE International Conference on Granular Computing, No. 60573057, pp. 442–447. IEEE, August 2008
Liu, Y.-C., Lee, C.-H., Chen, W.-C., Shin, J.W., Hsu, H.-H., Tseng, V.S.: A novel method for mining temporally dependent association rules in three-dimensional microarray datasets. In: 2010 International Computer Symposium (ICS), pp. 759–764. IEEE (2010)
Romero-Zaliz, R.C., Rubio-Escudero, C., Cobb, J.P., Herrera, F., Cordón, O., Zwir, I.: A multiobjective evolutionary conceptual clustering methodology for gene annotation within structural databases: a case of study on the gene ontology database. IEEE Trans. Evol. Comput. 12(6), 679–701 (2008)
Rubio-Escudero, C., Martínez-Álvarez, F., Romero-Zaliz, R.C., Zwir, I.: Classification of gene expression profiles: comparison of k-means and expectation maximization algorithms. In: Proceedings of IEEE International Conference on Hybrid Intelligent Systems, pp. 831–836 (2008)
Spearman, C.: Correlation calculated from faulty data. Br. J. Psychol. 1904–1920 3(3), 271–295 (1910)
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)
Xu, X., Lu, Y., Tan, K.L., Tung, A.K.H.: Finding time-lagged 3D clusters. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 445–456 (2009)
Zhao, L., Zaki, M.J.: triCluster: an effective algorithm for mining coherent clusters in 3D microarray data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 694–705 (2005)
Acknowledgments
The authors thank financial support by the Spanish Ministry of Science and Technology, projects TIN2011-28956-C02-02 and TIN2014-55894-C2-1-R and Junta de Andalucía’s project P12-TIC-7528.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Gutiérrez-Avilés, D., Rubio-Escudero, C. (2016). TRIQ: A Comprehensive Evaluation Measure for Triclustering Algorithms. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_56
Download citation
DOI: https://doi.org/10.1007/978-3-319-32034-2_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32033-5
Online ISBN: 978-3-319-32034-2
eBook Packages: Computer ScienceComputer Science (R0)