Skip to main content

Mesoporous Materials for Fuel Cells

  • Chapter
  • First Online:
Book cover Nanomaterials for Sustainable Energy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Fuel cell is the most efficient and environmentally friendly energy conversion technology to directly convert the chemical energy of fuels such as hydrogen, methane, methanol, ethanol and hydrocarbons into electricity with high efficiency and very low greenhouse gas emission. In fuel cells, porosity is a singular attribute, which controls not only the transport of fuel/oxidant to reactive sites but also the length or area of the three phase boundary or electrode/electrolyte interface where the electrochemical reaction occurs. Mesoporous materials with well-defined and highly ordered pore arrays in the range of 2–50 nm in diameter have attracted increasing attention as effective electrode and electrolyte materials for fuel cells in particular the low temperature proton exchange membrane fuel cells (PEMFCs) due to their unique water retention properties of ordered mesopores. This chapter starts with a brief review of the application of mesoporous materials in high temperature solid oxide fuel cells (SOFCs), followed by a detailed description and discussion of the advances in the synthesis and application of the mesoporous structured materials in PEMFCs, including mesoporous polymer membranes, such as mesoporous sulfonated block copolymers and meso-Nafion membrane, mesoporous inorganic/polymer composite membranes, and mesoporous inorganic materials such as mesoporous silica. The development of mesoporous carbon and metal oxide as electrocatalysts and catalyst supports in PEMFCs is also reviewed. The fundamental relationship between space symmetry, pore size, porosity, ordering level of the mesoporous materials and their electrochemical and fuel cell performance has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APTES:

3-thiopropyltrimethoxysilane

AST:

Accelerated stress test

ATMP:

Amino tris(methylene phosphonic acid)

BCPs:

Block copolymers

BMIm-BF4:

1-butyl-3-methylimidazolium tetrafluoroborate

BMIm-TFSI:

1-butyl-3-methylimidazolium bis(trifluoromethane sulfone) imide

BTCA:

Benzotriazole-5-carboxylic acid

CIM:

Conventional impregnation method

CMETCS:

2-(carbomethoxy)ethyltrichloro silane

CSPTMS:

2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane

DEPTES:

Diethylphosphatoethyltriethoxy silane

DFT:

Density functional theory

EIm-TfO:

N-Ethylimidazolium Trifluoromethanesulfonate

EISA:

Evaporation-induced self-assembly

FSAS:

1,2,2-Trifluoro-2-hydroxy-1-trifluoromethyl-ethanesulfonic acid sultone

HEX:

Hexagonally packed cylinders

HMS:

Hollow mesoporous silica

HPL:

Hexagonally perforated lamellae

HPAs:

Heteropolyacids

HPW:

Phosphotungstic acid

ICE:

Internal combustion engine

IEC:

Ion exchange capacity

IPN:

Interpenetrating polymer network

KU:

Keggin unit

LAM:

Lamellae

MEA:

Membrane-electrode-assembly

MPTMS:

Mercaptopropyltrimethoxy silane

MSA:

Methane sulphuric acid

OSPN:

Organosiloxane network

PA:

Phosphoric acid

PAC:

Proton acceptance capacity

PBI:

Polybenzenemidazole

PEM:

Proton exchange membrane

PEMFC:

Proton exchange membrane fuel cell

PESf:

Polyethersulfone

PETMS:

Phenethytrimethoxy silane

PFS:

Poly(4-fluorostyrene)

PFSA:

Perfluorosulfonic acid

PILs:

Protic ion liquids

PMMA:

Poly(methyl methacrylate)

PMO:

Periodic mesoporous organic silica

PS-b-sPHS:

Poly(styrene-block-sulfonated hydrostyrene

PSS-PMB:

Poly(styrenesulfonate-methylbutylene)

PTES:

Phenyltriethoxysilane

RH:

Relative humidity

SAN:

Poly(styrene-co-acrylonitrile)

SAXS:

Small angle x-ray scattering

SDAs:

Structural directing agents

SPEEK:

Sulfonated poly(ether ether keton)

sPHS:

Sulfonated polyhydroxystyrene

SMBS:

Sulfonated cube mesoporous benzene-silica

SPI:

Sulfonated polyimide

sPPO:

Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)

SPPSU:

Sulfonated poly(phenylsulfone)

sPS-PMMA:

Sulfonated polystyrene-poly(methyl methacrylate)

sSEBS:

Sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene

TEOS:

Tetraethyl orthosilicate

TPS:

3-(trihydroxysilyl)-1-propanesulfonic acid

VIM:

Impregnation method

References

  1. S.P. Jiang, P.K. Shen (ed.), Nanostructured and Advanced Materials for Fuel Cells (CRC Press, Boca Raton, 2013)

    Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  Google Scholar 

  3. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  Google Scholar 

  4. Y. Wan, D. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007)

    Article  Google Scholar 

  5. Y. Ye, C. Jo, I. Jeong, J. Lee, Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nanoscale 5, 4584–4605 (2013)

    Article  Google Scholar 

  6. M. Mamak, N. Coombs, G.A. Ozin, Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials. Adv. Funct. Mater. 11, 59–63 (2001)

    Article  Google Scholar 

  7. M. Mamak, N. Coombs, G. Ozin, Self-assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions. J. Am. Chem. Soc. 122, 8932–8939 (2000)

    Article  Google Scholar 

  8. I.M. Hung, D.T. Hung, K.Z. Fung, M.H. Hon, Effect of calcination temperature on morphology of mesoporous YSZ. J. Eur. Ceram. Soc. 26, 2627–2632 (2006)

    Article  Google Scholar 

  9. E. Rossinyol, E. Pellicer, A. Prim, S. Estrade, J. Arbiol, F. Peiro, A. Cornet, J.R. Morante, Gadolinium doped Ceria nanocrystals synthesized from mesoporous silica. J. Nanopart. Res. 10, 369–375 (2008)

    Article  Google Scholar 

  10. G. Xiao, Z. Jiang, H. Li, C. Xia, L. Chen, Studies on composite cathode with nanostructured Ce0.9Sm0.1O1.95 for intermediate temperature solid oxide fuel cells. Fuel Cells 9, 650–656 (2009)

    Article  Google Scholar 

  11. C. Su, X.M. Xu, Y.B. Chen, Y. Liu, M.O. Tade, Z.P. Shao, A top-down strategy for the synthesis of mesoporous Ba05Sr0.5Co0.8Fe0.2O3-delta as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance. J. Power Sour. 274, 1024–1033 (2015)

    Article  Google Scholar 

  12. I. Kivi, P. Moller, H. Kurig, S. Kallip, G. Nurk, E. Lust, Development of porous cathode powders for SOFC and influence of cathode structure on the oxygen electroreduction kinetics. Electrochem. Commun. 10, 1455–1458 (2008)

    Article  Google Scholar 

  13. J.J. Pan, H.I. Zhang, M. Pan, Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process. J. Colloid Interface Sci. 326, 55–60 (2008)

    Article  Google Scholar 

  14. V. Ramani, H.R. Kunz, J.M. Fenton, Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation. Electrochim. Acta 50, 1181–1187 (2005)

    Article  Google Scholar 

  15. N.P. Cele, S. Sinha Ray, S.K. Pillai, M. Ndwandwe, S. Nonjola, L. Sikhwivhilu, M.K. Mathe, Carbon nanotubes based nafion composite membranes for fuel cell applications. Fuel Cells 10, 64–71 (2010)

    Google Scholar 

  16. G.B. Ye, K. Li, C.A. Xiao, W. Chen, H.N. Zhang, M. Pan, Nafion (R)-titania nanocomposite proton exchange membranes. J. Appl. Polym. Sci. 120, 1186–1192 (2011)

    Article  Google Scholar 

  17. D.V. Bavykin, M. Carravetta, A.N. Kulak, F.C. Walsh, Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes. Chem. Mater. 22, 2458–2465 (2010)

    Article  Google Scholar 

  18. E. Morgado, P.M. Jardim, B.A. Marinkovic, F.C. Rizzo, M.A.S. De Abreu, J.L. Zotin, A.S. Araujo, Multistep structural transition of hydrogen trititanate nanotubes into TiO(2)-B nanotubes: a comparison study between nanostructured and bulk materials. Nanotechnol. 18 (2007)

    Google Scholar 

  19. K. Li, G.B. Ye, J.J. Pan, H.N. Zhang, M. Pan, Self-assembled Nafion (R)/metal oxide nanoparticles hybrid proton exchange membranes. J. Membr. Sci. 347, 26–31 (2010)

    Article  Google Scholar 

  20. A. Vishnyakov, A.V. Neimark, Molecular simulation study of Nafion membrane solvation in water and methanol. J. Phys. Chem. B 104, 4471–4478 (2000)

    Article  Google Scholar 

  21. P. Choi, N.H. Jalani, R. Datta, thermodynamics and proton transport in Nafion: II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 152, E123–E130 (2005)

    Article  Google Scholar 

  22. K. Feng, L. Hou, B. Tang, P. Wu, Does thermal treatment merely make a H2O-saturated Nafion membrane lose its absorbed water at high temperature? Phys. Chem. Chem. Phys. 17, 9106–9115 (2015)

    Article  Google Scholar 

  23. J. Lu, H. Tang, C. Xu, S.P. Jiang, Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications. J. Mater. Chem. 22, 5810–5819 (2012)

    Article  Google Scholar 

  24. J. Lu, S. Lu, S.P. Jiang, Highly ordered mesoporous Nafion membranes for fuel cells. Chem. Commun. 47, 3216–3218 (2011)

    Article  Google Scholar 

  25. J. Lu, H. Tang, S. Lu, H. Wu, S.P. Jiang, A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells. J. Mater. Chem. 21, 6668–6676 (2011)

    Article  Google Scholar 

  26. J. Li, H. Tang, L. Chen, R. Chen, M. Pan, S.P. Jiang, Highly ordered and periodic mesoporous Nafion membranes via colloidal silica mediated self-assembly for fuel cells. Chem. Commun. 49, 6537–6539 (2013)

    Article  Google Scholar 

  27. J. Zhang, J. Li, H. Tang, M. Pan, S.P. Jiang, Comprehensive strategy to design highly ordered mesoporous Nafion membranes for fuel cells under low humidity conditions. J. Mater. Chem. A 2, 20578–20587 (2014)

    Article  Google Scholar 

  28. N.W. DeLuca, Y.A. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell: a review. J. Polym. Sci., Part B: Polym. Phys. 44, 2201–2225 (2006)

    Article  Google Scholar 

  29. M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004)

    Article  Google Scholar 

  30. P.V. Komarov, I.N. Veselov, P.P. Chu, P.G. Khalatur, Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone) and Nafion. Soft Matter 6, 3939–3956 (2010)

    Article  Google Scholar 

  31. W.H. Choi, W.H. Jo, Preparation of new proton exchange membrane based on self-assembly of Poly(styrene-co-styrene sulfonic acid)-b-poly(methyl methacrylate)/Poly(vinylidene fluoride) blend. J. Power Sour. 188, 127–131 (2009)

    Article  Google Scholar 

  32. S.B. Darling, Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32, 1152–1204 (2007)

    Article  Google Scholar 

  33. J. Won, H.H. Park, Y.J. Kim, S.W. Choi, H.Y. Ha, I.-H. Oh, H.S. Kim, Y.S. Kang, K.J. Ihn, Fixation of nanosized proton transport channels in membranes†. Macromolecules 36, 3228–3234 (2003)

    Article  Google Scholar 

  34. H.-C. Lee, H. Lim, W.-F. Su, C.-Y. Chao, Novel sulfonated block copolymer containing pendant alkylsulfonic acids: syntheses, unique morphologies, and applications in proton exchange membrane. J. Polym. Sci. Part A Polym. Chem. 49, 2325–2338 (2011)

    Article  Google Scholar 

  35. M. Ingratta, E.P. Jutemar, P. Jannasch, Synthesis, nanostructures and properties of sulfonated poly(phenylene oxide) bearing polyfluorostyrene side chains as proton conducting membranes. Macromolecules 44, 2074–2083 (2011)

    Article  Google Scholar 

  36. M.J. Park, K.H. Downing, A. Jackson, E.D. Gomez, A.M. Minor, D. Cookson, A.Z. Weber, N.P. Balsara, Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation. Nano Lett. 7, 3547–3552 (2007)

    Article  Google Scholar 

  37. E. Helfand, Z.R. Wasserman, Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 9, 879–888 (1976)

    Article  Google Scholar 

  38. M.J. Park, N.P. Balsara, Phase behavior of symmetric sulfonated block copolymers. Macromolecules 41, 3678–3687 (2008)

    Article  Google Scholar 

  39. S. Ge, X. Li, B. Yi, I.-M. Hsing, Absorption, desorption, and transport of water in polymer electrolyte membranes for fuel cells. J. Electrochem. Soc. 152, A1149–A1157 (2005)

    Article  Google Scholar 

  40. L. Rubatat, C.X. Li, H. Dietsch, A. Nykanen, J. Ruokolainen, R. Mezzenga, Structure-properties relationship in proton conductive sulfonated polystyrene-polymethyl methacrylate block copolymers (sPS-PMMA). Macromolecules 41, 8130–8137 (2008)

    Article  Google Scholar 

  41. H. Tang, Z. Wan, M. Pan, S.P. Jiang, Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. Electrochem. Commun. 9, 2003–2008 (2007)

    Article  Google Scholar 

  42. D. Zhao, Y. Wan, W. Zhou, Ordered Mesoporous Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2013), pp. 5–54

    Google Scholar 

  43. H. Li, M. Nogami, Pore-controlled proton conducting silica films. Adv. Mater. 14, 912–914 (2002)

    Article  Google Scholar 

  44. Y.G. Jin, S.Z. Qiao, Z.P. Xu, J.C. Diniz da Costa, G.Q. Lu, Porous silica nanospheres functionalized with phosphonic acid as intermediate-temperature proton conductors. J. Phys. Chem. C 113, 3157–3163 (2009)

    Article  Google Scholar 

  45. A. Matsuda, Y. Nono, T. Kanzaki, K. Tadanaga, M. Tatsumisago, T. Minami, Proton conductivity of acid-impregnated mesoporous silica gels prepared using surfactants as a template. Solid State Ionics 145, 135–140 (2001)

    Article  Google Scholar 

  46. Y. Jin, S. Qiao, L. Zhang, Z.P. Xu, S. Smart, J.C.D. da Costa, G.Q. Lu, Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. J. Power Sour. 185, 664–669 (2008)

    Article  Google Scholar 

  47. Y. Choi, Y. Kim, H.K. Kim, J.S. Lee, Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic-inorganic composite membranes. J. Membr. Sci. 357, 199–205 (2010)

    Article  Google Scholar 

  48. Y. Chiba, Y. Tominaga, Poly(ethylene-co-vinyl alcohol)/Sulfonated Mesoporous Organosilicate Composites as Proton-conductive Membranes. J. Power Sour. 203, 42–47 (2012)

    Article  Google Scholar 

  49. Y. Tominaga, T. Maki, Proton-conducting composite membranes based on polybenzimidazole and sulfonated mesoporous organosilicate. Int. J. Hydrogen Energy 39, 2724–2730 (2014)

    Article  Google Scholar 

  50. K.-D. Kreuer, A. Rabenau, W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. 21, 208–209 (1982)

    Article  Google Scholar 

  51. L. Bernard, A. Fitch, A.F. Wright, B.E.F. Fender, A.T. Howe, Proceedings of the international conference on fast ionic transport in solidsmechanisms of hydrogen diffusion and conduction in DUO2AsO4·4D2O as inferred from neutron diffraction evidence. Solid State Ionics 5, 459–462 (1981)

    Google Scholar 

  52. F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert, C. Sanchez, Advanced mesostructured hybrid Silica –Nafion membranes for high-performance PEM fuel cell. Chem. Mater. 20, 1710–1718 (2008)

    Article  Google Scholar 

  53. H. Pu, L. Lou, Y. Guan, Z. Chang, D. Wan, Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. J. Membr. Sci. 415–416, 496–503 (2012)

    Article  Google Scholar 

  54. Y. Zhao, H. Yang, H. Wu, Z. Jiang, Enhanced proton conductivity of hybrid membranes by incorporating phosphorylated hollow mesoporous silica submicrospheres. J. Membr. Sci. 469, 418–427 (2014)

    Article  Google Scholar 

  55. X. Fang, C. Chen, Z. Liu, P. Liu, N. Zheng, A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 3, 1632–1639 (2011)

    Article  Google Scholar 

  56. R. Deshmukh, U. Schubert, Synthesis of CuO and Cu3N nanoparticles in and on hollow silica spheres. Eur. J. Inorg. Chem. 2013, 2498–2504 (2013)

    Article  Google Scholar 

  57. G. Qi, Y. Wang, L. Estevez, A.K. Switzer, X. Duan, X. Yang, E.P. Giannelis, Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem. Mater. 22, 2693–2695 (2010)

    Article  Google Scholar 

  58. Y. Li, J. Shi, Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv. Mater. 26, 3176–3205 (2014)

    Article  Google Scholar 

  59. T. Zhang, J. Ge, Y. Hu, Q. Zhang, S. Aloni, Y. Yin, Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew. Chem. Int. Ed. 47, 5806–5811 (2008)

    Article  Google Scholar 

  60. Q. Zhang, T. Zhang, J. Ge, Y. Yin, Permeable silica shell through surface-protected etching. Nano Lett. 8, 2867–2871 (2008)

    Article  Google Scholar 

  61. Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4, 529–539 (2010)

    Article  Google Scholar 

  62. Y. Yin, W. Deng, H. Wang, A. Li, C. Wang, Z. Jiang, H. Wu, Fabrication of hybrid membranes by incorporating acid-base pair functionalized hollow mesoporous silica for enhanced proton conductivity. J. Mater. Chem. A 3, 16079–16088 (2015)

    Article  Google Scholar 

  63. K. Feng, B. Tang, P. Wu, A “H2O donating/methanol accepting” platform for preparation of highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A (2015)

    Google Scholar 

  64. Y.-F. Lin, C.-Y. Yen, C.-C.M. Ma, S.-H. Liao, C.-H. Lee, Y.-H. Hsiao, H.-P. Lin, High proton-conducting Nafion (R)/-SO3H functionalized mesoporous silica composite membranes. J. Power Sour. 171, 388–395 (2007)

    Article  Google Scholar 

  65. Y. Tominaga, I.-C. Hong, S. Asai, M. Sumita, Proton conduction in Nafion composite membranes filled with mesoporous silica. J. Power Sour. 171, 530–534 (2007)

    Article  Google Scholar 

  66. Z. Chen, R.S. Hsu, Nafion/acid functionalized mesoporous silica nanocomposite membrane for high temperature PEMFCs. Proton Exch. Membr. Fuel Cells 9(25), 1151–1157 (2009)

    Google Scholar 

  67. J.C. McKeen, Y.S. Yan, M.E. Davis, Proton conductivity of acid-functionalized zeolite beta, MCM-41, and MCM-48: Effect of acid strength. Chem. Mater. 20, 5122–5124 (2008)

    Article  Google Scholar 

  68. S. Meenakshi, A.K. Sahu, S.D. Bhat, P. Sridhar, S. Pitchumani, A.K. Shukla, Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells. Electrochim. Acta 89, 35–44 (2013)

    Article  Google Scholar 

  69. L. Geng, Y. He, D. Liu, C. Lu, New organic-inorganic hybrid membranes based on sulfonated polyimide/aminopropyltriethoxysilane doping with sulfonated mesoporous silica for direct methanol fuel cells. J. Appl. Polym. Sci. 123, 3164–3172 (2012)

    Article  Google Scholar 

  70. D. Liu, L. Geng, Y. Fu, X. Dai, C. Lue, Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells. J. Membr. Sci. 366, 251–257 (2011)

    Article  Google Scholar 

  71. L. Geng, Y. He, D. Liu, X. Dai, C. Lu, Facile in situ template synthesis of sulfonated polyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells. Microporous Mesoporous Mater. 148, 8–14 (2012)

    Article  Google Scholar 

  72. D.X. Luu, E.-B. Cho, O.H. Han, D. Kim, SAXS and NMR analysis for the cast solvent effect on sPEEK membrane properties. J. Phys. Chem. B 113, 10072–10076 (2009)

    Article  Google Scholar 

  73. S. Zhou, D. Kim, Cross-linked aryl-sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell. Electrochim. Acta 63, 238–244 (2012)

    Article  Google Scholar 

  74. J.-R. Lee, J.-H. Won, K.-S. Yoon, Y.T. Hong, S.-Y. Lee, Multilayer-structured, SiO2/sulfonated poly(phenylsulfone) composite membranes for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 37, 6182–6188 (2012)

    Article  Google Scholar 

  75. J.-H. Won, H.-J. Lee, K.-S. Yoon, Y.T. Hong, S.-Y. Lee, Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly(phenylsulfone) composite membranes for low-humidity proton exchange membrane fuel cells: anomalous behavior of humidity-dependent proton conductivity. Int. J. Hydrogen Energy 37, 9202–9211 (2012)

    Article  Google Scholar 

  76. L. Xie, E.-B. Cho, D. Kim, Sulfonated PEEK/cubic (Im3m) mesoporous benzene-silica composite membranes operable at low humidity. Solid State Ionics 203, 1–8 (2011)

    Article  Google Scholar 

  77. V. Delhorbe, X. Thiry, C. Cailleteau, E. Mourier, M. Bathfield, L. Chikh, O. Fichet, B. Ameduri, R. Mercier, S. Vidal, L. Augier, E. Espuche, F. Gouanve, G. Gebel, A. Morin, Fluorohexane network and sulfonated PEEK based semi-IPNs for fuel cell membranes. J. Membr. Sci. 389, 57–66 (2012)

    Article  Google Scholar 

  78. D.X. Luu, D. Kim, Semi-interpenetrating polymer network electrolyte membranes composed of sulfonated poly(ether ether ketone) and organosiloxane-based hybrid network. J. Power Sour. 196, 10584–10590 (2011)

    Article  Google Scholar 

  79. S.Y. Han, J. Park, D. Kim, Proton-conducting electrolyte membranes based on organosiloxane network/sulfonated poly(ether ether ketone) interpenetrating polymer networks embedding sulfonated mesoporous benzene-silica. J. Power Sour. 243, 850–858 (2013)

    Article  Google Scholar 

  80. R. Marschall, J. Rathousky, M. Wark, Ordered functionalized silica materials with high proton conductivity. Chem. Mater. 19, 6401–6407 (2007)

    Article  Google Scholar 

  81. R. Marschall, I. Bannat, J. Caro, M. Wark, Proton conductivity of sulfonic acid functionalised mesoporous materials. Microporous Mesoporous Mater. 99, 190–196 (2007)

    Article  Google Scholar 

  82. Q. Yang, J. Liu, L. Zhang, C. Li, Functionalized periodic mesoporous organosilicas for catalysis. J. Mater. Chem. 19, 1945–1955 (2009)

    Article  Google Scholar 

  83. E.-B. Cho, D.X. Luu, D. Kim, Enhanced transport performance of sulfonated mesoporous benzene-silica incorporated poly(ether ether ketone) composite membranes for fuel cell application. J. Membr. Sci. 351, 58–64 (2010)

    Article  Google Scholar 

  84. M. Wilhelm, M. Jeske, R. Marschall, W.L. Cavalcanti, P. Tölle, C. Köhler, D. Koch, T. Frauenheim, G. Grathwohl, J. Caro, M. Wark, New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H-functionalized mesoporous Si-MCM-41 particles. J. Membr. Sci. 316, 164–175 (2008)

    Article  Google Scholar 

  85. G.L. Athens, Y. Ein-Eli, B.F. Chmelka, Acid-functionalized mesostructured aluminosilica for hydrophilic proton conduction membranes. Adv. Mater. 19, 2580–2587 (2007)

    Article  Google Scholar 

  86. M. Alvaro, A. Corma, D. Das, V. Fornes, H. Garcia, Single-step preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion[registered sign], Chem. Commun. 956–957 (2004)

    Google Scholar 

  87. F. Hoffmann, M. Cornelius, J. Morell, M. Froeba, Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 3216–3251 (2006)

    Article  Google Scholar 

  88. D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem. Mater. 12, 2448–2459 (2000)

    Article  Google Scholar 

  89. E.-B. Cho, H. Kim, D. Kim, Effect of morphology and pore size of sulfonated mesoporous benzene-silicas in the preparation of poly(vinyl alcohol)-based hybrid nanocomposite membranes for direct methanol fuel cell application. J. Phys. Chem. B 113, 9770–9778 (2009)

    Article  Google Scholar 

  90. T. Asefa, M.J. MacLachlan, N. Coombs, G.A. Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402, 867–871 (1999)

    Google Scholar 

  91. B.J. Melde, B.T. Holland, C.F. Blanford, A. Stein, Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem. Mater. 11, 3302–3308 (1999)

    Article  Google Scholar 

  92. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 121, 9611–9614 (1999)

    Article  Google Scholar 

  93. C.-H. Tsai, H.-J. Lin, H.-M. Tsai, J.-T. Hwang, S.-M. Chang, Y.-W. Chen-Yang, Characterization and PEMFC application of a mesoporous sulfonated silica prepared from two precursors, tetraethoxysilane and phenyltriethoxysilane. Int. J. Hydrogen Energy 36, 9831–9841 (2011)

    Article  Google Scholar 

  94. S. Meenakshi, A. Manokaran, S.D. Bhat, A.K. Sahu, P. Sridhar, S. Pitchumani, Impact of mesoporous and microporous materials on performance of nafion and SPEEK polymer electrolytes: a comparative study in DEFCs. Fuel Cells 14, 842–852 (2014)

    Article  Google Scholar 

  95. G.L. Athens, D. Kim, J.D. Epping, S. Cadars, Y. Ein-Eli, B.F. Chmelka, Molecular optimization of multiply-functionalized mesoporous films with ion conduction properties. J. Am. Chem. Soc. 133, 16023–16036 (2011)

    Article  Google Scholar 

  96. M. Alvaro, A. Corma, D. Das, V. Fornés, H. García, “Nafion”-functionalized mesoporous MCM-41 silica shows high activity and selectivity for carboxylic acid esterification and Friedel-Crafts acylation reactions. J. Catal. 231, 48–55 (2005)

    Article  Google Scholar 

  97. S. Moghaddam, E. Pengwang, Y.-B. Jiang, A.R. Garcia, D.J. Burnett, C.J. Brinker, R.I. Masel, M.A. Shannon, An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat. Nanotechnol. 5, 230–236 (2010)

    Article  Google Scholar 

  98. S. Fujita, A. Koiwai, M. Kawasumi, S. Inagaki, Enhancement of proton transport by high densification of sulfonic acid groups in highly ordered mesoporous silica. Chem. Mater. 25, 1584–1591 (2013)

    Article  Google Scholar 

  99. Z. Zhou, R. Liu, J. Wang, S. Li, M. Liu, J.-L. Brédas, Intra- and intermolecular proton transfer in 1H(2H)-1,2,3-triazole based systems. J. Phys. Chem. A 110, 2322–2324 (2006)

    Article  Google Scholar 

  100. S. Liu, Z. Yue, Y. Liu, Incorporation of Imidazole within the metal-organic framework UiO-67 for enhanced anhydrous proton conductivity. Dalton Trans. 44, 12976–12980 (2015)

    Article  Google Scholar 

  101. S. Scheiner, M. Yi, Proton transfer properties of imidazole. J. Phys. Chem. 100, 9235–9241 (1996)

    Article  Google Scholar 

  102. W. Munch, K.D. Kreuer, W. Silvestri, J. Maier, G. Seifert, The diffusion mechanism of an excess proton in imidazole molecule chains: first results of an ab initio molecular dynamics study. Solid State Ionics 145, 437–443 (2001)

    Article  Google Scholar 

  103. Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34, 449–477 (2009)

    Article  Google Scholar 

  104. R. He, Q. Li, J.O. Jensen, N.J. Bjerrum, Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Polym., Sci. Part A Polym. Chem. 45, 2989–2997 (2007)

    Google Scholar 

  105. R.H. He, Q.F. Li, A. Bach, J.O. Jensen, N.J. Bjerrum, Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J. Membr. Sci. 277, 38–45 (2006)

    Article  Google Scholar 

  106. R. Marschall, M. Sharifi, M. Wark, Proton conductivity of imidazole functionalized ordered mesoporous silica: influence of type of anchorage, chain length and humidity. Microporous Mesoporous Mater. 123, 21–29 (2009)

    Article  Google Scholar 

  107. W.L. Cavalcanti, R. Marschall, P. Tölle, C. Köhler, M. Wark, T. Frauenheim, Insight into proton conduction of immobilised imidazole systems via simulations and impedance spectroscopy. Fuel Cells 8, 244–253 (2008)

    Article  Google Scholar 

  108. K.A. Sung, K.-H. Oh, W.-K. Kim, M.-J. Choo, K.-W. Nam, J.-K. Park, Proton exchange membrane using imidazole-functionalized silica to enhance proton conductivity at lower humidity. Electrochem. Solid State Lett. 14, B114–B116 (2011)

    Article  Google Scholar 

  109. I.S. Amiinu, W. Li, G. Wang, Z. Tu, H. Tang, M. Pan, H. Zhang, Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes. Electrochim. Acta 160, 185–194 (2015)

    Article  Google Scholar 

  110. S. Li, Z. Zhou, Y. Zhang, M. Liu, W. Li, 1H–1,2,4-triazole: an effective solvent for proton-conducting electrolytes. Chem. Mater. 17, 5884–5886 (2005)

    Article  Google Scholar 

  111. Z. Zhou, S. Li, Y. Zhang, M. Liu, W. Li, Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. J. Am. Chem. Soc. 127, 10824–10825 (2005)

    Article  Google Scholar 

  112. D. Basak, C. Versek, J.A. Harvey, S. Christensen, J. Hillen, S.M. Auerbach, M.T. Tuominen, D. Venkataraman, Enhanced anhydrous proton conduction in binary mixtures of 1H-imidazole-1H-1,2,3-triazole based compounds. J. Mater. Chem. 22, 20410–20417 (2012)

    Article  Google Scholar 

  113. S.J. Park, D.H. Lee, Y.S. Kang, High temperature proton exchange membranes based on triazoles attached onto SBA-15 type mesoporous silica. J. Membr. Sci. 357, 1–5 (2010)

    Article  Google Scholar 

  114. F. Yan, S. Yu, X. Zhang, L. Qiu, F. Chu, J. You, J. Lu, Enhanced proton conduction in polymer electrolyte membranes as synthesized by polymerization of protic ionic liquid-based microemulsions. Chem. Mater. 21, 1480–1484 (2009)

    Article  Google Scholar 

  115. S. Subianto, M.K. Mistry, N.R. Choudhury, N.K. Dutta, R. Knout, Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous pem applications. ACS Appl. Mater. Interfaces 1, 1173–1182 (2009)

    Article  Google Scholar 

  116. S.S. Sekhon, J.-S. Park, E. Cho, Y.-G. Yoon, C.-S. Kim, W.-Y. Lee, Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids. Macromolecules 42, 2054–2062 (2009)

    Article  Google Scholar 

  117. Y.-S. Ye, J. Rick, B.-J. Hwang, Ionic liquid polymer electrolytes. J. Mater. Chem. A 1, 2719–2743 (2013)

    Article  Google Scholar 

  118. I.S. Amiinu, X. Liang, Z. Tu, H. Zhang, J. Feng, Z. Wan, M. Pan, Anhydrous proton conducting materials based on sulfonated dimethylphenethylchlorosilane grafted mesoporous silica/ionic liquid composite. ACS Appl. Mater. Interfaces 5, 11535–11543 (2013)

    Article  Google Scholar 

  119. B. Lin, S. Cheng, L. Qiu, F. Yan, S. Shang, J. Lu, Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem. Mater. 22, 1807–1813 (2010)

    Article  Google Scholar 

  120. A.K. Mishra, T. Kuila, D.-Y. Kim, N.H. Kim, J.H. Lee, Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for pproton exchange membrane fuel cells. J. Mater. Chem. 22, 24366–24372 (2012)

    Article  Google Scholar 

  121. A.K. Mishra, N.H. Kim, J.H. Lee, Effects of ionic liquid-functionalized mesoporous silica on the proton conductivity of acid-doped poly(2,5-benzimidazole) composite membranes for high-temperature fuel cells. J. Membr. Sci. 449, 136–145 (2014)

    Article  Google Scholar 

  122. Y.-S. Ye, G.-W. Liang, B.-H. Chen, W.-C. Shen, C.-Y. Tseng, M.-Y. Cheng, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, Effect of morphology of mesoporous silica on characterization of protic ionic liquid-based composite membranes. J. Power Sour. 196, 5408–5415 (2011)

    Article  Google Scholar 

  123. E. Quartarone, P. Mustarelli, Polymer fuel cells based on polybenzimidazole/H3PO4. Engegy Environ. Sci. 5, 6436–6444 (2012)

    Google Scholar 

  124. C. Laberty-Robert, K. Valle, F. Pereira, C. Sanchez, Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem. Soc. Rev. 40, 961–1005 (2011)

    Article  Google Scholar 

  125. S. Yu, L. Xiao, B.C. Benicewicz, Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8, 165–174 (2008)

    Article  Google Scholar 

  126. Y. Zhao, H. Yang, H. Wu, Z. Jiang, Enhanced proton conductivity of the hybrid membranes by regulating the proton conducting groups anchored on the mesoporous silica. J. Power Sour. 270, 292–303 (2014)

    Article  Google Scholar 

  127. J. Zeng, B. He, K. Lamb, R. De Marco, P.K. Shen, S.P. Jiang, Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells. Chem. Commun. 49, 4655–4657 (2013)

    Article  Google Scholar 

  128. J. Zeng, B. He, K. Lamb, R. De Marco, P.K. Shen, S.P. Jiang, Anhydrous phosphoric acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells. ACS Appl. Mater. Interfaces 5, 11240–11248 (2013)

    Article  Google Scholar 

  129. J. Weber, K.-D. Kreuer, J. Maier, A. Thomas, Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv. Mater. 20, 2595–2598 (2008)

    Article  Google Scholar 

  130. J. Lee, C.-W. Yi, K. Kim, Phosphoric acid-functionalized mesoporous silica/nafion composite membrane for high temperature PEMFCs. Bull. Korean Chem. Soc. 33, 1397–1400 (2012)

    Article  Google Scholar 

  131. S.Y. Chen, C.C. Han, C.H. Tsai, J. Huang, Y.W. Chen-Yang, Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J. Power Sour. 171, 363–372 (2007)

    Article  Google Scholar 

  132. W.H.J. Hogarth, J.C.D. da Costa, J. Drennan, G.Q. Lu, Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications. J. Mater. Chem. 15, 754–758 (2005)

    Article  Google Scholar 

  133. N.K. Mal, A. Bhaumik, M. Matsukata, M. Fujiwara, Syntheses of mesoporous hybrid iron oxophenyl phosphate, iron oxophosphate, and sulfonated oxophenyl phosphate. Ind. Eng. Chem. Res. 45, 7748–7751 (2006)

    Article  Google Scholar 

  134. Z. Chai, Q. Suo, H. Wang, X. Wang, Mesoporous lanthanum phosphate nanostructures containing H3PO4 as superior electrolyte for PEM fuel cells. Rsc Adv. 3, 21928–21935 (2013)

    Article  Google Scholar 

  135. Z. Chai, L. Gao, C. Wang, H. Zhang, R. Zheng, P.A. Webley, H. Wang, Synthesis of mesoporous LaPO4 nanostructures with controllable morphologies. New J. Chem. 33, 1657–1662 (2009)

    Article  Google Scholar 

  136. E. Rodríguez-Castellón, J. Jiménez-Jiménez, A. Jiménez-López, P. Maireles-Torres, J.R. Ramos-Barrado, D.J. Jones, J. Rozière, Proton conductivity of mesoporous MCM type of zirconium and titanium phosphates. Solid State Ionics 125, 407–410 (1999)

    Google Scholar 

  137. M. Casciola, D. Bianchi, Frequency response of polycrystalline samples of α-Zr(HPO4)2·H2O at different relative humidities. Solid State Ionics 17, 287–293 (1985)

    Article  Google Scholar 

  138. M. Kourasi, R.G.A. Wills, A.A. Shah, F.C. Walsh, Heteropolyacids for fuel cell applications. Electrochim. Acta 127, 454–466 (2014)

    Article  Google Scholar 

  139. S. Sachdeva, J.A. Turner, J.L. Horan, A.M. Herring, in Fuel Cells and Hydrogen Storage, ed. by A. Bocarsly, D.M.P. Mingos (2011), pp. 115–168

    Google Scholar 

  140. O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, High-conductivity solid proton conductors: dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem. Lett. 8, 17–18 (1979)

    Article  Google Scholar 

  141. S.P. Jiang, Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. J. Mater. Chem. A 2, 7637–7655 (2014)

    Article  Google Scholar 

  142. S.P. Jiang, Functionalized mesoporous materials as new class high temperature proton exchange membranes for fuel cells. Solid State Ionics 262, 307–312 (2014)

    Article  Google Scholar 

  143. S. Lu, D. Wang, S.P. Jiang, Y. Xiang, J. Lu, J. Zeng, HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. Adv. Mater. 22, 971+ (2010)

    Google Scholar 

  144. S. Choi, Y. Wang, Z. Nie, J. Liu, C.H.F. Peden, Cs-substituted tungstophosphoric acid salt supported on mesoporous silica. Catal. Today 55, 117–124 (2000)

    Article  Google Scholar 

  145. S. Lu, D. Wang, J. Lu, J. Zeng, S.P. Jiang, in Proton Exchange Membrane Fuel Cells, vol. 9, ed. by T. Fuller, H. Uchida, P. Strasser, P. Shirvanian, C. Lamy, C. Hartnig, H.A. Gasteiger, T. Zawodzinski, T. Jarvi, P. Bele, V. Ramani, S. Cleghorn, D. Jones, P. Zelenay (2009), pp. 1927–1933

    Google Scholar 

  146. S. Lu, D. Wang, Y. Xiang, S.P. Jiang, High temperature ceramic proton exchange membranes for direct methanol fuel cells. Fuel Cell Seminar 2010(26), 269–277 (2009)

    Google Scholar 

  147. J. Zeng, S.P. Jiang, Characterization of high-temperature proton-exchange membranes based on phosphotungstic acid functionalized mesoporous silica nanoconnposites for fuel cells. J. Phys. Chem. C 115, 11854–11863 (2011)

    Article  Google Scholar 

  148. J. Zeng, Y. Zhou, L. Li, S.P. Jiang, Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Phys. Chem. Chem. Phys. 13, 10249–10257 (2011)

    Article  Google Scholar 

  149. J. Zeng, P.K. Shen, S. Lu, Y. Xiang, L. Li, R. De Marco, S.P. Jiang, Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells. J. Membr. Sci. 397, 92–101 (2012)

    Article  Google Scholar 

  150. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G.H. Findenegg, H.-H. Limbach, G. Buntkowsky, Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1H solid-state NMR. Chem. Eur. J. 10, 5689–5696 (2004)

    Article  Google Scholar 

  151. A. Pettersson, J.B. Rosenholm, Streaming potential studies on the adsorption of amphoteric alkyldimethylamine and alkyldimethylphosphine oxides on mesoporous silica from aqueous solution. Langmuir 18, 8447–8454 (2002)

    Article  Google Scholar 

  152. H. Tang, M. Pan, S. Lu, J. Lu, S.P. Jiang, One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. Chem. Commun. 46, 4351–4353 (2010)

    Article  Google Scholar 

  153. C. Lin, T. Haolin, P. Mu, Periodic Nafion-silica-heteropolyacids electrolyte t for PEM fuel cell operated near 200 °C. Int. J. Hydrogen Energy 37, 4694–4698 (2012)

    Article  Google Scholar 

  154. C. Lin, T. Haolin, L. Junrui, P. Mu, Highly ordered Nafion-silica-HPW proton exchange membrane for elevated temperature fuel cells. Int. J. Energy Res. 37, 879–887 (2013)

    Article  Google Scholar 

  155. H. Tang, M. Pan, S.P. Jiang, Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. Dalton Trans. 40, 5220–5227 (2011)

    Article  Google Scholar 

  156. R. Fan, S. Huh, R. Yan, J. Arnold, P. Yang, Gated proton transport in aligned mesoporous silica films. Nat. Mater. 7, 303–307 (2008)

    Article  Google Scholar 

  157. H. Munakata, S. Ochiai, K. Kanamura, Pore size effect on improvement of surface proton conductivity for three-dimensionally ordered macroporous silica composite membrane. J. Electrochem. Soc. 154, B871–B875 (2007)

    Article  Google Scholar 

  158. F. Lefebvre, 31P MAS NMR study of H3PW12O40 supported on silica: formation of ([triple bond, length half m-Dash]SiOH2+)(H2PW12O40-). J. Chem. Soc., Chem. Commun. 756–757 (1992)

    Google Scholar 

  159. S.L. Gojković, T.R. Vidaković, D.R. Đurović, Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochim. Acta 48, 3607–3614 (2003)

    Article  Google Scholar 

  160. F. Hajbolouri, B. Andreaus, G.G. Scherer, A. Wokaun, CO tolerance of commercial Pt and PtRu gas diffusion electrodes in polymer electrolyte fuel cells. Fuel Cells 4, 160–168 (2004)

    Article  Google Scholar 

  161. J. Zeng, B. Jin, P.K. Shen, B. He, K. Lamb, R. De Marco, S.P. Jiang, Stack performance of phosphotungstic acid functionalized mesoporous silica (HPW-meso-silica) nanocomposite high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 38, 12830–12837 (2013)

    Article  Google Scholar 

  162. T.J. Schmidt, J. Baurmeister, Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sour. 176, 428–434 (2008)

    Article  Google Scholar 

  163. X.-Z. Yuan, S. Zhang, H. Wang, J. Wu, J.C. Sun, R. Hiesgen, K.A. Friedrich, M. Schulze, A. Haug, Degradation of a polymer exchange membrane fuel cell stack with Nafion® membranes of different thicknesses: Part I. In situ diagnosis. J. Power Sourc. 195, 7594–7599 (2010)

    Article  Google Scholar 

  164. X.-Z. Yuan, S. Zhang, S. Ban, C. Huang, H. Wang, V. Singara, M. Fowler, M. Schulze, A. Haug, K. Andreas Friedrich, R. Hiesgen, Degradation of a PEM fuel cell stack with Nafion® membranes of different thicknesses. Part II: Ex situ diagnosis, J. Power Sources 205, 324–334 (2012)

    Google Scholar 

  165. M. Nagao, A. Takeuchi, P. Heo, T. Hibino, M. Sano, A. Tomita, A proton-conducting In3+-doped SnP2O7 electrolyte for intermediate-temperature fuel cells. Electrochem. Solid State Lett. 9, A105–A109 (2006)

    Article  Google Scholar 

  166. T. Matsui, N. Kazusa, Y. Kato, Y. Iriyama, T. Abe, K. Kikuchi, Z. Ogumi, Effect of pyrophosphates as supporting matrices on proton conductivity for NH4PO3 composites at intermediate temperatures. J. Power Sour. 171, 483–488 (2007)

    Article  Google Scholar 

  167. T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi, Intermediate-temperature fuel cell employing CsH2PO4∕SiP2O7-based composite electrolytes. J. Electrochem. Soc. 153, A339–A342 (2006)

    Article  Google Scholar 

  168. Y. Zhou, J. Yang, H. Su, J. Zeng, S.P. Jiang, W.A. Goddard, Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells. J. Am. Chem. Soc. 136, 4954–4964 (2014)

    Article  Google Scholar 

  169. H.J. Song, C.K. Kim, Fabrication and properties of ultrafiltration membranes composed of polysulfone and poly(1-vinylpyrrolidone) grafted silica nanoparticles. J. Membr. Sci. 444, 318–326 (2013)

    Google Scholar 

  170. S.S. Madaeni, P. Moradi, Preparation and characterization of asymmetric polysulfone membrane for separation of oxygen and nitrogen gases. J. Appl. Polym. Sci. 121, 2157–2167 (2011)

    Article  Google Scholar 

  171. B. Chakrabarty, A.K. Ghoshal, A.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 315, 36–47 (2008)

    Article  Google Scholar 

  172. L. Bai, L. Zhang, H.Q. He, R.K.S.A. Rasheed, C.Z. Zhang, O.L. Ding, S.H. Chan, Fabrication of phosphotungstic acid functionalized mesoporous silica composite membrane by alternative tape-casting incorporating phase inversion technique. J. Power Sour. 246, 522–530 (2014)

    Article  Google Scholar 

  173. N. Nakamoto, A. Matsuda, K. Tadanaga, T. Minami, M. Tatsumisago, Medium temperature operation of fuel cells using thermally stable proton-conducting composite sheets composed of phosphosilicate gel and polyimide. J. Power Sour. 138, 51–55 (2004)

    Article  Google Scholar 

  174. A. Garsuch, X. Michaud, C. O’Neill, P. Li, J.R. Dahn, in Proton Exchange Membrane Fuel Cells, vol. 8, ed. by T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, H.A. Gasteiger, T. Zawodzinski, C. Lamy (Pts 1 and 2, 2008), pp. 139–146

    Google Scholar 

  175. B. Fang, J.H. Kim, C. Lee, J.-S. Yu, Hollow macroporous Core/Mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J. Phys. Chem. C 112, 639–645 (2008)

    Article  Google Scholar 

  176. K. Pei, D. Banham, F. Feng, T. Fuerstenhaupt, S. Ye, V. Birss, Oxygen reduction activity dependence on the mesoporous structure of imprinted carbon supports. Electrochem. Commun. 12, 1666–1669 (2010)

    Article  Google Scholar 

  177. C. Liang, Z. Li, S. Dai, Mesoporous carbon materials: synthesis and modification. Angew. Chem. Int. Ed. 47, 3696–3717 (2008)

    Article  Google Scholar 

  178. J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015)

    Article  Google Scholar 

  179. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001)

    Article  Google Scholar 

  180. B. Fang, J.H. Kim, M. Kim, J.-S. Yu, Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem. Mater. 21, 789–796 (2009)

    Article  Google Scholar 

  181. N.P. Lebedeva, A.S. Booij, G.J.M. Janssen, in Proton Exchange Membrane Fuel Cells, vol. 8, ed. by T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, H.A. Gasteiger, T. Zawodzinski, C. Lamy (Pts 1 and 2, 2008), pp. 2083–2092

    Google Scholar 

  182. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999)

    Article  Google Scholar 

  183. M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S.H. Joo, R. Ryoo, Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. J. Phys. Chem. B 106, 1256–1266 (2002)

    Article  Google Scholar 

  184. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001)

    Article  Google Scholar 

  185. N.-I. Kim, J. Seong, M.-J. Yang, S.-H. Cho, J.-Y. Park, H.-S. Choi, S.H. Joo, K. Kwon, in Polymer Electrolyte Fuel Cells, vol. 13, ed. by H.A. Gasteiger, A. Weber, K. Shinohara, H. Uchida, S. Mitsushima, T.J. Schmidt, S.R. Narayanan, V. Ramani, T. Fuller, M. Edmundson, P. Strasser, R. Mantz, J. Fenton, F.N. Buchi, D.C. Hansen, D.L. Jones, C. Coutanceau, K. SwiderLyons, K.A. Perry (2013), pp. 1277–1283

    Google Scholar 

  186. Z. Lei, S. Bai, Y. Xiao, L. Dang, L. An, G. Zhang, Q. Xu, CMK-5 mesoporous carbon synthesized via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation. J. Phys. Chem. C 112, 722–731 (2008)

    Article  Google Scholar 

  187. T. Maiyalagan, T.O. Alaje, K. Scott, Highly stable Pt–Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt–Ru/CMK-8) as promising electrocatalysts for methanol oxidation. J. Phys. Chem. C 116, 2630–2638 (2012)

    Article  Google Scholar 

  188. J.-S. Lee, S.H. Joo, R. Ryoo, Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc. 124, 1156–1157 (2002)

    Article  Google Scholar 

  189. W. Ying, Y. Haifeng, Z. Dongyuan, Biomolecular catalysis. Am. Chem. Soc. 2–48 (2008)

    Google Scholar 

  190. F.Q. Zhang, Y. Meng, D. Gu, Y. Yan, C.Z. Yu, B. Tu, D.Y. Zhao, A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure. J. Am. Chem. Soc. 127, 13508–13509 (2005)

    Article  Google Scholar 

  191. Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005)

    Article  Google Scholar 

  192. Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu, D. Zhao, Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc. 129, 1690–1697 (2007)

    Article  Google Scholar 

  193. Z. Li, M. Jaroniec, Synthesis and adsorption properties of colloid-imprinted carbons with surface and volume mesoporosity. Chem. Mater. 15, 1327–1333 (2003)

    Article  Google Scholar 

  194. Z. Li, M. Jaroniec, Colloidal Imprinting: a novel approach to the synthesis of mesoporous carbons. J. Am. Chem. Soc. 123, 9208–9209 (2001)

    Article  Google Scholar 

  195. B. Ficicilar, A. Bayrakceken, I. Eroglu, Effect of Pd loading in Pd-Pt bimetallic catalysts doped into hollow core mesoporous shell carbon on performance of proton exchange membrane fuel cells. J. Power Sour. 193, 17–23 (2009)

    Article  Google Scholar 

  196. P.V. Shanahan, L. Xu, C. Liang, M. Waje, S. Dai, Y.S. Yan, Graphitic mesoporous carbon as a durable fuel cell catalyst support. J. Power Sources 185, 423–427 (2008)

    Article  Google Scholar 

  197. J.H. Kim, B. Fang, M. Kim, J.-S. Yu, Hollow spherical carbon with mesoporous shell as a superb anode catalyst support in proton exchange membrane fuel cell. Catal. Today 146, 25–30 (2009)

    Article  Google Scholar 

  198. B. Fang, J.H. Kim, M. Kim, M. Kim, J.-S. Yu, Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. Phys. Chem. Chem. Phys. 11, 1380–1387 (2009)

    Article  Google Scholar 

  199. B. Ficicilar, A. Bayrakceken, I. Eroglu, Pt incorporated hollow core mesoporous shell carbon nanocomposite catalyst for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 35, 9924–9933 (2010)

    Article  Google Scholar 

  200. A. Garsuch, R. d’Eon, T. Dahn, O. Klepel, R.R. Garsuch, J.R. Dahn, Oxygen reduction behavior of highly porous non-noble metal catalysts prepared by a template-assisted synthesis route. J. Electrochem. Soc. 155, B236–B243 (2008)

    Google Scholar 

  201. H. Liu, C. Song, Y. Tang, J. Zhang, J. Zhang, High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochim. Acta 52, 4532–4538 (2007)

    Article  Google Scholar 

  202. L. Zhang, J. Kim, E. Dy, S. Ban, K.-C. Tsay, H. Kawai, Z. Shi, J. Zhang, Synthesis of novel mesoporous carbon spheres and their supported Fe-based electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochim. Acta 108, 480–485 (2013)

    Article  Google Scholar 

  203. H. Liu, Z. Shi, J. Zhang, L. Zhang, J. Zhang, Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel celloxygen reduction electrocatalysts. J. Mater. Chem. 19, 468–470 (2009)

    Article  Google Scholar 

  204. M. Zhou, C. Yang, K.-Y. Chan, Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction. Adv. Energy Mater. 4 (2014)

    Google Scholar 

  205. R. Gadiou, A. Didion, S.-E. Saadallah, M. Couzi, J.-N. Rouzaud, P. Delhaes, C. Vix-Guterl, Graphitization of carbons synthesized in a confined geometry. Carbon 44, 3348–3352 (2006)

    Article  Google Scholar 

  206. L. Zhang, J. Kim, E. Dy, S. Ban, K.-C. Tsay, H. Kawai, Z. Shi, J. Zhang, Effect of template size on the synthesis of mesoporous carbon spheres and their supported Fe-based ORR electrocatalysts. Electrochim. Acta 108, 814–819 (2013)

    Article  Google Scholar 

  207. S.-Y. Huang, P. Ganesan, B.N. Popov, Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS catal. 2, 825–831 (2012)

    Article  Google Scholar 

  208. S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 131, 13898–13899 (2009)

    Article  Google Scholar 

  209. M.C. Orilall, F. Matsumoto, Q. Zhou, H. Sai, H.D. Abruña, F.J. DiSalvo, U. Wiesner, One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide–carbon composites for fuel cell electrodes. J. Am. Chem. Soc. 131, 9389–9395 (2009)

    Article  Google Scholar 

  210. E. Kang, S. An, S. Yoon, J.K. Kim, J. Lee, Ordered mesoporous WO3-X possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. J. Mater. Chem. 20, 7416–7421 (2010)

    Article  Google Scholar 

  211. L. Samiee, F. Shoghi, A. Maghsodi, In situ functionalisation of mesoporous carbon electrodes with carbon nanotubes for proton exchange membrane fuel-cell application. Mater. Chem. Phys. 143, 1228–1235 (2014)

    Article  Google Scholar 

  212. M. Lei, T.Z. Yang, W.J. Wang, K. Huang, R. Zhang, X.L. Fu, H.J. Yang, Y.G. Wang, W.H. Tang, Self-assembled mesoporous carbon sensitized with ceria nanoparticles as durable catalyst support for PEM fuel cell. Int. J. Hydrogen Energy 38, 205–211 (2013)

    Article  Google Scholar 

  213. F. Kleitz, S. Hei Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2136–2137 (2003)

    Google Scholar 

  214. Y. Doi, A. Takai, Y. Sakamoto, O. Terasaki, Y. Yamauchi, K. Kuroda, Tailored synthesis of mesoporous platinum replicas using double gyroid mesoporous silica (KIT-6) with different pore diameters via vapor infiltration of a reducing agent. Chem. Commun. 46, 6365–6367 (2010)

    Article  Google Scholar 

  215. Y. Lei, T. Li, J. Gu, T. Yu, J. Liu, Z. Zou, Study on platinum and copper nanosheets alloys supported on mesoporous titanium dioxide doped with carbon black as electrocatalysts in pem fuel cells. Electroanalysis 24, 699–706 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Australian Research Council under the Discovery Project Scheme (Project Number: DP150102025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Ping Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, J., Jiang, S.P. (2016). Mesoporous Materials for Fuel Cells. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_10

Download citation

Publish with us

Policies and ethics