Skip to main content

Evaluation of Submarine Groundwater Discharge as a Coastal Nutrient Source and Its Role in Coastal Groundwater Quality and Quantity

  • Chapter
  • First Online:
Emerging Issues in Groundwater Resources

Part of the book series: Advances in Water Security ((AWS))

Abstract

Globally, submarine groundwater discharge (SGD) is responsible for 3–4 times the water discharge delivered to the oceans by rivers. Moreover, nutrient concentrations in SGD are usually elevated in comparison to river fluxes. Here we review the major advances in the field of SGD studies and related nutrient fluxes to the coastal ocean. To demonstrate the significance of SGD as terrestrial nutrient pathway we compare stream and submarine groundwater discharge rates in a watershed on the windward side of Oahu, one of the major islands of the Hawaii archipelago. Our analysis of Kaneohe Bay, which hosts the largest coral reefs on the island revealed that SGD in the form of total (fresh+brackish) groundwater discharge was 2–4 times larger than surface inputs. Corresponding DIN and silicate fluxes were also dominated by SGD, while DIP was delivered mostly via streams. We quantified bulk nutrient uptake in coastal waters and also demonstrated that nutrients were quickly removed from the bay due to fast coastal flushing rates. This study demonstrates the need to understand SGD-derived nutrient fluxes in order to evaluate land-based coastal nutrient and pollution sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A Rn_cw :

Coastal water radon activity

A Rn_gw :

Groundwater radon activity

CT :

Terrestrial nutrient concentration

CB:

Central Kaneohe Bay

CI:

Coconut Island

DIN:

Dissolved inorganic nitrogen

DIP:

Dissolved inorganic phosphorus

DON:

Dissolved organic nitrogen

DOP:

Dissolved organic phosphorus

dpm:

Decays per minute

GPS:

Global positioning system

gw:

Groundwater

HFP:

Heeia Fishpond

I:

Effective terrestrial end-member nutrient concentration

Kh :

Horizontal eddy diffusion coefficient

L :

Length

n:

Number

NB:

Northwest Kaneohe Bay

QT :

Terrestrial water flux

Q SGD :

Submarine groundwater discharge flux

R:

Nutrient removal rate

Ra:

Radium

Rai :

Nearshore water radium activity

Rao :

Offshore water radium activity

Rn:

Radon

SGD:

Submarine groundwater discharge

STE:

Subterranean estuary

sw:

Surface water

t:

Time, residence time, flushing rate

T1/2 :

Radionuclide half-life

T1:

Transect 1

T2:

Transect 2

T3:

Transect 3

TDN:

Total dissolved nitrogen

TDP:

Total dissolved phosphorus

Th:

Thorium

U:

Uranium

V:

Volume

λ:

Radionuclide decay constant

References

  • Andersen MS, Baron L, Gudbjerg J, Gregersen J, Chapellier D, Jakobsen R, Postma D (2007) Discharge of nitrate-containing groundwater into a coastal marine environment. J Hydrol 336:98–114

    Article  Google Scholar 

  • Bathen KH (1968) A descriptive study of the physical oceanography of Kaneohe Bay, Oahu, Hawaii. University of Hawaii, Hawaii Institute of Marine Biology Technical Report No. 14, p 353

    Google Scholar 

  • Beck AJ, Cochran JK, Sañudo-Wilhelmy SA (2009) Temporal trends of dissolved trace metals in Jamaica Bay, NY: importance of wastewater input and submarine groundwater discharge. Estuar Coasts 32:535–550

    Article  CAS  Google Scholar 

  • Beck AJ, Charette MA, Cochran JK, Gonneea ME, Peucker-Ehrenbrink B (2013) Dissolved strontium in the subterranean estuary—implications for the marine strontium isotope budget. Geochim Cosmochim Acta 117:33–52

    Article  CAS  Google Scholar 

  • Bokuniewicz H, Buddemeier R, Maxwell B, Smith C (2003) The typological approach to submarine ground-water discharge (SGD). Biogeochemistry 66:145–158

    Article  CAS  Google Scholar 

  • Bowen JL, Valiela I (2001) The ecological effects of urbanization of coastal watersheds: historical increases in nitrogen loads and eutrophication of Waquoit Bay estuaries. Can J Fish Aquat Sci 58:1489–1500

    Article  CAS  Google Scholar 

  • Bratton JF (2010) The three scales of submarine groundwater flow and discharge across passive continental margins. J Geol 118(5):565–575

    Article  CAS  Google Scholar 

  • Briggs RA, Ruttenberg KC, Ricardo AE, Glazer BT (2013) Constraining sources of organic matter to tropical coastal sediments: consideration of non-traditional end members. Aquat Geochem 19(5–6):543–563

    Article  CAS  Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the Coastal Zone via continuous Radon-222 measurements. J Environ Radioact 69(1–2):21–35

    Article  CAS  Google Scholar 

  • Charette MA (2007) Hydrologic forcing of submarine groundwater discharge: insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnol Oceanogr 52(1):230–239

    Article  CAS  Google Scholar 

  • Charette MA, Sholkovitz ER, Hansel CM (2005) Trace element cycling in a subterranean estuary, part 1: geochemistry of the permeable sediments. Geochim Cosmochim Acta 69:2095–2109

    Article  CAS  Google Scholar 

  • Charette MA, Moore WS, Burnett WC (2008) Uranium- and thorium-series nuclides as tracers of submarine groundwater discharge. Radioact Environ 13:155–191

    Article  CAS  Google Scholar 

  • Cyronak T, Schulz KG, Santos IR, Eyre BD (2014) Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks. Geophys Res Lett 41(15):5538–5546

    Article  CAS  Google Scholar 

  • Dailer ML, Knox RS, Smith JE, Napier M, Smith CM (2010) Using δ15N values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawai’i, USA. Mar Pollut Bull 60:655–671

    Article  CAS  Google Scholar 

  • Dimova NT, Swarzenski PW, Dulaiova H, Glenn C (2012) Utilizing multi-channel electrical resistivity methods to examine the dynamics of the freshwater–saltwater interface in two Hawaiian groundwater systems. J Geophys Res 117. doi:10.1029/2011JC007509

    Google Scholar 

  • Dollar SJ, Atkinson MJ (1992) Effects of nutrient subsidies from groundwater to near shore marine ecosystems off the island of Hawaii. Estuar Coast Shelf Sci 35:409–424

    Article  CAS  Google Scholar 

  • Drupp P, DeCarlo EH, Mackenzie FT, Bienfang P, Sabine CL (2011) Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquat Geochem 17:473–498

    Article  CAS  Google Scholar 

  • Dulaiova H, Burnett WC, Wattayakorn G, Sojisuporn P (2006) Are the groundwater inputs into river-dominated areas important? The Chao Phraya River-Gulf of Thailand. Limnol Oceanogr 51:2232–2247

    Article  CAS  Google Scholar 

  • Dulaiova H, Camilli R, Henderson PB, Charette MA (2010) Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters. J Environ Radioact 101(7):553–563. doi:10.1016/j.jenvrad.2009.12.004

    Article  CAS  Google Scholar 

  • Garrison GH, Glenn CR, McMurtry GM (2003) Measurement of submarine groundwater discharge in Kahana Bay, Oahu, Hawaii. Limnol Oceanogr 48:920–928

    Article  Google Scholar 

  • Glenn CG, Whittier RB, Dailer ML, Dulaiova H, El-Kadi AI, Fackrell J, Kelly JL, Waters CA, Sevadjian J (2013) Lahaina groundwater tracer study—Lahaina, Maui, Hawaii. Final Report prepared for the State of Hawaii Department of Health, US EPA and US Army Engineer Research and Development Center. 502 pp

    Google Scholar 

  • Gonneea ME, Charette MA (2014) Hydrologic controls on nutrient cycling in an unconfined coastal aquifer. Environ Sci Tech 48:14178–14185

    Article  CAS  Google Scholar 

  • Gonneea ME, Morris P, Dulaiova H, Charette MA (2008) New perspectives on radium behavior within a subterranean estuary. Mar Chem 109:250–267

    Article  CAS  Google Scholar 

  • Holleman K (2011) Comparison of submarine groundwater discharge, coastal residence times, and rates of primary productivity, Manualua Bay, Oahu and Honokohau Harbor, Big Island, Hawaii, USA. M.S. Thesis, University of Hawaii

    Google Scholar 

  • Hoover DJ (2002) Fluvial nitrogen and phosphorus inputs to Hawaiian coastal waters: storm loading, particle-solution transformations and ecosystem impacts. Unpublished Ph.D. discussion, Department of Oceanography, University of Hawaii

    Google Scholar 

  • Hoover DJ et al (2009) Fluvial Fluxes of water, suspended particulate matter, and nutrients and potential impacts on tropical coastal water biogeochemistry: Oahu, Hawaii. Aquat Geochem 15:547–570

    Article  CAS  Google Scholar 

  • Izuka SK, Hill BR, Shade PJ, Tribble GW (1994) Geohydrology and possible transport routes of polychlorinated biphenyls in Haiku valley, Oahu, Hawaii. Water-Resources Investigations Report 92-4168. U.S. Geological Survey

    Google Scholar 

  • Johnson EE, Wiegner TN (2014) Surface water metabolism potential in groundwater-fed coastal waters of Hawaii Island, USA. Estuar Coasts 37:712–723. doi:10.1007/s12237-013-9708-y

    Article  CAS  Google Scholar 

  • Johnson AG, Glenn CR, Burnett WC, Peterson RN, Lucey PG (2008) Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophys Res Lett 35(15), L15606

    Article  Google Scholar 

  • Kaul LW, Froelich PN (1984) Modeling estuarine nutrient geochemistry in a simple system. Geochem Cosmochim Acta 48:1417–1433

    Article  CAS  Google Scholar 

  • Kelly RP, Moran SB (2002) Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr 47:1796–1807

    Article  Google Scholar 

  • Kim G, Kim J-S, Hwang D-W (2011) Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: implications for global biological production. Limnol Oceanogr 56(2):673–682

    Article  CAS  Google Scholar 

  • Kim TH, Waska H, Kwon EH, Suryaputra IGN, Kim G (2012) Production, degradation, and flux of dissolved organic matter in the subterranean estuary of a large tidal flat. Mar Chem 142–144:1–10

    Article  Google Scholar 

  • Kiro Y, Weinstein Y, Starinsky A, Yechieli Y (2013) Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer. Geochim Cosmochim Acta 122:17–35. doi:10.1016/j.gca.2013.08.005

    Article  CAS  Google Scholar 

  • Kleven A (2014) Coastal Groundwater Discharge as a Source of Nutrients to He’eia Fishpond, O’ahu, HI. Undergraduate thesis, Global Environmental Science Program, University of Hawaii at Manoa. XB-12-02

    Google Scholar 

  • Knee KL, Street JH, Grossman EE, Boehm AB, Paytan A (2010) Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: relation to land use (Kona Coast, Hawai’i, USA). Limnol Oceanogr 55:1105–1122

    Article  CAS  Google Scholar 

  • Knee KL, Garcia-Solosna E, Garcia-Orellana J, Boehm AB, Paytan A (2011) Using radium isotopes to characterize water ages and coastal mixing rates: a sensitivity analysis. Limnol Oceanogr Methods 9:380–395

    Article  CAS  Google Scholar 

  • Krest JM, Moore WS, Rama (1999) 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. Mar Chem 64:129–152

    Article  CAS  Google Scholar 

  • Kroeger KD, Charette MA (2008) Nitrogen biogeochemistry of submarine groundwater discharge. Limnol Oceanogr 53:1025–1039

    Article  CAS  Google Scholar 

  • Kwon EY, Kim G, Primeau F, Moore WS, Cho H-M, DeVries T, Sarmiento JL, Charette MA, Cho Y-K (2015) Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys Res Lett 41:8438–8444. doi:10.1002/2014GL061574

    Article  Google Scholar 

  • Laws EA (1980) Effects of waste-water discharges on phytoplankton communities. In: University of Hawaii, Sea Grant Cooperative Report UNIHI-SEAGRANT-CR-80-1. pp. 13–40

    Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147

    Article  CAS  Google Scholar 

  • Leta OT, El-kadi A, Dulaiova H, Ghazal K (2015) Applicability of the SWAT model for hydrological modeling of a small-scale watershed in Hawaii under scarcity of hydrological data. J Hydrol Eng (in press)

    Google Scholar 

  • Li HL, Jiao JJ (2013) Quantifying tidal contribution to submarine groundwater discharges: a review. Chin Sci Bull 58(25):3053–3059

    Article  CAS  Google Scholar 

  • Lowe R, Falter JL, Monismith SG, Atkinson MJ (2009) A numerical study of circulation in a coastal reef-lagoon system. J Geophys Res 114:C06022. doi:10.1029/2008JC005081

    Article  Google Scholar 

  • Lucas LV, Thompson JK, Brown LR (2009) Why are diverse relationships observed between phytoplankton biomass and transport time? Limnol Oceanogr 54(1):381–390

    Article  Google Scholar 

  • Maeda M, Windom HL (1982) Behavior of uranium in two estuaries of the south-eastern United States. Mar Chem 11:427–436

    Article  CAS  Google Scholar 

  • Mayfield KK (2013) A summary of the submarine groundwater discharge (SGD) in Kahana Bay: spatial and intra-daily variability. Undergraduate thesis, Global Environmental Science Program, University of Hawaii at Manoa. 48 p

    Google Scholar 

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436(7054):1145–1148

    Article  CAS  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614

    Article  CAS  Google Scholar 

  • Moore WS (1997) The effects of groundwater input at the mouth of the Ganges-Brahmaputra Rivers on barium and radium fluxes to the Bay of Bengal. Earth Planet Sci Lett 150:141–150

    Article  CAS  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–126

    Article  CAS  Google Scholar 

  • Moore WS (2000a) Determining coastal mixing rates using radium isotopes. Cont Shelf Res 20:1993–2007

    Article  Google Scholar 

  • Moore WS (2000b) Ages of continental shelf waters determined from 223Ra and 224Ra. J Geophys Res 105:22117–22122

    Article  CAS  Google Scholar 

  • Moore WS (2003) Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66:75–93

    Article  CAS  Google Scholar 

  • Moore WS (2006) The role of submarine groundwater discharge in coastal biogeochemistry. J Geochem Explor 88:389–393

    Article  CAS  Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88

    Article  Google Scholar 

  • Moore WS, Wilson AM (2005) Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth Planet Sci Lett 235:564–576

    Article  CAS  Google Scholar 

  • Moore WS, Blanton JO, Joye SB (2006) Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J Geophys Res 111. doi:10.1029/2007jc004199

  • Moore WS, Sarmiento JL, Key RM (2008) Submarine ground-water discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nat Geosci 1:309–311

    Article  CAS  Google Scholar 

  • Paytan A, Shellenbarger GG, Street JH, Gonneea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr 51:343–348

    Article  CAS  Google Scholar 

  • Peterson PN, Burnett WC, Taniguchi M, Chen J, Santos IR, Ishitobi T (2009) Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. J Geophys Res 113:1–14

    Google Scholar 

  • Ringuet S, Mackenzie FT (2005) Controls on nutrient and phytoplankton dynamics during normal flow and storm runoff conditions, southern Kaneohe Bay, Hawaii. Estuaries 28:327–337

    Article  CAS  Google Scholar 

  • Robinson C, Li L, Prommer H (2006) Tide-induced recirculation across the aquifer-ocean interface. Water Resour Res 43(7), W07428

    Google Scholar 

  • Robinson C, Li L, Barry DA (2007) Effect of tidal forcing on a subterranean estuary. Adv Water Resour 30(4):851–865

    Article  Google Scholar 

  • Roy M, Martin JB, Cherrier J, Cable JE, Smith CG (2010) Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary. Geochim Cosmochim Acta 74(19):5560–5573

    Article  CAS  Google Scholar 

  • Santoro AE, Boehm AB, Francis CA (2006) Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl Environ Microbiol 72(3):2102–2109

    Article  CAS  Google Scholar 

  • Santos IR, Burnett WC, Chanton J, Suryaputra B, Dittmar T (2008) Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnol Oceanogr 53(2):705–718

    Article  CAS  Google Scholar 

  • Santos IR, Eyre BD, Glud RN (2010) Influence of porewater advection on denitrification in carbonate sands: evidence from repacked sediment column experiments. Geochim Cosmochim Acta 96:247–258

    Article  Google Scholar 

  • Santos IR, Eyre BD, Huettel M (2012) The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2013) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophys Res Lett 38(3)

    Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186(2):385–391

    Article  CAS  Google Scholar 

  • Shade PJ, Nichols WD (1996). Water budget and the effects of land-use changes on ground-water recharge, Oahu, Hawaii. USGS Professional Paper 1412-C

    Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  CAS  Google Scholar 

  • Smith SV, Kimmerer W, Laws E, Brock RE, Walsh T (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pac Sci 35(4)

    Google Scholar 

  • Smith J, Smith C, Hunter C (2001) An experimental analysis of the effects of herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19(4):332–342

    Article  Google Scholar 

  • Spiteri C, Slomp CP, Charette MA, Tuncay K, Meile C (2008) Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling. Geochim Cosmochim Acta 72:3398–3412

    Article  CAS  Google Scholar 

  • Street JH, Knee KL, Grossman EE, Paytan A (2008) Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai. Mar Chem 109:355–376

    Article  CAS  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Smith CF, Paulsen RJ, O’Rourke D, Krupa SL, Christoff JL (2003) Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry 66:35–53

    Article  CAS  Google Scholar 

  • Timmerman A, Young C, McManus MA, Ruttenberg KC, D’Andrea B (2015). Seasonal dynamics of freshwater input to a tropical coastal marine embayment. Estuar Coast Shelf Sci

    Google Scholar 

  • Tomasky G, Valiela I, Charette MA (2013) Determination of water mass ages using radium isotopes as tracers: implications for phytoplankton dynamics in estuaries. Mar Chem 156:18–26

    Article  Google Scholar 

  • Wang G, Wang Z, Zhai W, Moore WS, Li Q, Yan X, Qi D, Jiang Y (2014) Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochim Cosmochim Acta 149:103–114

    Article  Google Scholar 

  • Wankel SD, Kendall C, Paytan A (2009) Using nitrate dual isotopic composition (dN and dO) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California. J Geophys Res 114:G01011. doi:10.1029/2008JG000729

    Article  Google Scholar 

  • Waska H, Kim G (2011) Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. J Sea Res 65:103–113

    Article  Google Scholar 

  • Weston NB, Porubsky WP, Samarkin V, MacAvoy S, Erickson M, Joye SB (2006) Pore water stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in intertidal creek-bank sediments. Biogeochemistry 77:375–408

    Article  CAS  Google Scholar 

  • Wilson AM, Gardner LR (2006) Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resour Res 42:W01405. doi:10.1029/2005WR004302

    Article  Google Scholar 

  • Windom HL, Moore WS, Niecheski LFH, Jahnke R (2006) Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar Chem 102:252–266

    Article  CAS  Google Scholar 

  • Young CW (2011) Perturbation of nutrient inventories and phytoplankton community composition during storm events in a tropical coastal system: He’eia Fishpond, O’ahu, Hawaii. M.S. Thesis, The Department of Oceanography, University of Hawaii, 400 pp

    Google Scholar 

  • Zektser IS (2000) Groundwater and the environment: applications for the global community. Lewis Publishers (CRC Press LLC)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of the following individuals from the University of Hawaii: James Bishop, Kim Falinski, Christine Waters, Sam Wall. We are grateful to Kako’o’iwi and Paepae o He‛eia who provided access to the study sites, logistical support, and field assistance. This paper was funded in part by a grant from the NOAA, Project R/IR-19, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA09OAR4170060, NA14OAR4170071 from NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies. UNIHI-SEAGRANT-BC-12-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrietta Dulai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dulai, H., Kleven, A., Ruttenberg, K., Briggs, R., Thomas, F. (2016). Evaluation of Submarine Groundwater Discharge as a Coastal Nutrient Source and Its Role in Coastal Groundwater Quality and Quantity. In: Fares, A. (eds) Emerging Issues in Groundwater Resources. Advances in Water Security. Springer, Cham. https://doi.org/10.1007/978-3-319-32008-3_8

Download citation

Publish with us

Policies and ethics