Skip to main content

Magnetic Resonance Imaging in Acute and Chronic Limb Ischemia

  • Chapter
  • First Online:
Critical Limb Ischemia

Abstract

Magnetic resonance angiography (MRA) of central and peripheral vessels is a well-established method. ACC/AHA 2005 Practice Guidelines for the Management of Patients with Peripheral Arterial Disease recommends that MRA of the extremities should be performed with gadolinium enhancement (class I recommendation). However, due to concerns about the cost and safety of gadolinium-based contrast agents in certain patients, there is significant ongoing development in the field of non-contrast MRA with promising results. Appropriate indications for peripheral MRA include diagnosis of peripheral arterial disease (PAD), selecting patients for endovascular intervention or surgical bypass of lower extremity PAD, and post-revascularization surveillance of lower extremity PAD. Other indications include assessment of peripheral arterial aneurysms, dissection, and peripheral thromboembolism. The role of MRA in acute critical limb ischemia is limited due to the need for urgent diagnosis and intervention that can be achieved with invasive angiography.

MRA is a noninvasive imaging technique that unlike computed tomography (CT) and digital subtraction angiography (DSA) does not expose patients to the dweleterious effects of ionizing radiation or iodinated contrast agents. Vessel lumen is not affected by arterial calcifications as in CT. Unlike ultrasound, MRA has the ability to generate excellent three-dimensional images of vessels of interest. CE-MRA has >90 % sensitivity and specificity as compared with DSA. MRA has longer acquisition times compared to CT and is more technically demanding. It’s important to understand the safety issues related to MRI and gadolinium-based contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patel MR, Spertus JA, Brindis RG, et al. ACCF proposed method for evaluating the appropriateness of cardiovascular imaging. J Am Coll Cardiol. 2005;46:1606–13.

    Article  PubMed  Google Scholar 

  2. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease). J Am Coll Cardiol. 2006;47:e1–192.

    Google Scholar 

  3. Sacks D, Bettmann M, Casciani T, et al. Expert panel on cardiovascular imaging: claudication appropriateness criteria. 2005. Available at: http://www.acr.org/ac. Accessed 21 Jan 2015.

  4. Ni Y. MR contrast agents for cardiac imaging. In: Bogaert J, Dymarkowski S, Taylor AM, Muthurangu V, editors. Clinical cardiac MRI. 2nd ed. Berlin: Springer; 2012. p. 31–51.

    Google Scholar 

  5. Bellin MF, Vasile M, Morel-Precetti S. Currently used non-specific extracellular MR contrast media. Eur Radiol. 2003;13:2688–98.

    Article  CAS  PubMed  Google Scholar 

  6. Edelman RR. Contrast-enhanced MR, imaging of the heart: overview of the literature. Radiology. 2004;232:653–68.

    Article  PubMed  Google Scholar 

  7. Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications of ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging. 2015;41:884–98.

    Article  PubMed  Google Scholar 

  8. ACR Manual on Contrast Media. Version 9. 2013. http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast Manual/2013_Contrast_Media.pdf.

  9. Matsumura T, Hayakawa M, Shimada F, et al. Safety of gadopentetate dimeglumine after 120 million administrations over 25 years of clinical use. Magn Reson Med Sci. 2013;12:297–304.

    Article  PubMed  Google Scholar 

  10. Cowper SE. Nephrogenic systemic fibrosis: an overview. J Am Coll Radiol. 2008;5:23–8.

    Article  PubMed  Google Scholar 

  11. Grobner T. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–8.

    Article  CAS  PubMed  Google Scholar 

  12. Prince MR, Zhang H, Morris M, et al. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology. 2008;248:807–16.

    Article  PubMed  Google Scholar 

  13. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.

    Article  PubMed  Google Scholar 

  14. High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56:21–6.

    Article  PubMed  Google Scholar 

  15. Martin DR, Krishnamoorthy SK, Kalb B, et al. Decreased incidence of NSF in patients on dialysis after changing gadolinium contrast-enhanced MRI protocols. J Magn Reson Imaging. 2010;31:440–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mühler MR, Clément O, Salomon LJ, et al. Maternofetal pharmacokinetics of a gadolinium chelate contrast agent in mice. Radiology. 2011;258:455–60.

    Article  PubMed  Google Scholar 

  17. De Santis M, Straface AF, Cavaliere B, et al. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet Gynecol. 2007;86:99–101.

    Article  Google Scholar 

  18. Wang PI, Chong ST, Kielar AZ. Imaging of pregnant and lactating patients: Part 1. evidence-based review and recommendations. AJR Am J Roentgenol. 2012;198:778–84.

    Article  PubMed  Google Scholar 

  19. Neimatallah MA, Ho VB, Dong Q, et al. Gadolinium-enhanced 3D magnetic resonance angiography of the thoracic vessels. J Magn Reson Imaging. 1999;10:758–70.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang HL, Ho BY, Chao M, et al. Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral MR angiography using thigh compression. AJR Am J Roentgenol. 2004;183:1041–7.

    Article  PubMed  Google Scholar 

  21. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC. Breath-hold single-dose gadolinium enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology. 1996;201:705–10.

    Article  CAS  PubMed  Google Scholar 

  22. Marks B, Mitchell DG, Simelaro JP. Breath-holding in healthy and pulmonary-compromised populations: effects of hyperventilation and oxygen inspiration. J Magn Reson Imaging. 1997;7:595–7.

    Article  CAS  PubMed  Google Scholar 

  23. Prince MR, Chabra SG, Watts R, et al. Contrast material travel times in patients undergoing peripheral MR angiography. Radiology. 2002;224:55–61.

    Article  PubMed  Google Scholar 

  24. Meissner OA, Rieger J, Weber C, et al. Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology. 2005;235:308–18.

    Article  PubMed  Google Scholar 

  25. Goyen M, Edelman M, Perreault P, et al. MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology. 2005;236:825–33.

    Article  PubMed  Google Scholar 

  26. Rapp JH, Wolff SD, Quinn SF, et al. Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography–multicenter comparative phase III study. Radiology. 2005;236:71–8.

    Article  PubMed  Google Scholar 

  27. Dellegrottaglie S, Sanz J, Macaluso F, et al. Technology insight: magnetic resonance angiography for the evaluation of patients with peripheral artery disease. Nat Clin Pract Cardiovasc Med. 2007;4:677–87.

    Article  PubMed  Google Scholar 

  28. Willmann JK, Wildermuth S, Pfammatter T, et al. Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography. Radiology. 2003;226(3):798–811.

    Article  PubMed  Google Scholar 

  29. Svensson J, Petersson JS, Stahlberg F, et al. Image artifacts due to a time-varying contrast medium concentration in 3D contrast-enhanced MRA. J Magn Reson Imaging. 1999;10:919–28.

    Article  CAS  PubMed  Google Scholar 

  30. Maki JH, Prince MR, Londy FJ, Chenevert TL. The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging. 1996;6:642–51.

    Article  CAS  PubMed  Google Scholar 

  31. Laub GA. Time-of-flight method of MR angiography. Magn Reson Imaging Clin N Am. 1995;3:391–98.

    CAS  PubMed  Google Scholar 

  32. Wedeen VJ, Meuli RA, Edelman RR, et al. Projective imaging of pulsatile flow with magnetic resonance. Science. 1985;230:946–48.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazaki M, Takai H, Sugiura S, et al. Peripheral MRA: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology. 2003;227:890–96.

    Article  PubMed  Google Scholar 

  34. Wong P, Graves MJ, Lomas DJ. Interactive two-dimensional fresh blood imaging: a feasibility study. Eur Radiol. 2009;19:904–11.

    Article  PubMed  Google Scholar 

  35. Lim RP, Hecht EM, Xu J, et al. 3D Nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J Magn Reson Imaging. 2008;28:181–89.

    Article  PubMed  Google Scholar 

  36. Gutzeit A, Stutter R, Froehlich JM, et al. ECG-triggered non-contrast-enhanced MR angiography (TRANCE) versus digital subtraction (DSA) in patients with peripheral arterial occlusive disease of the lower extremities. Eur Radiol. 2011;21:1979–87.

    Google Scholar 

  37. Edelman RR, Sheehan JJ, Dunkle E, et al. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med. 2010;63:951–58.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grizzard J, Shah DJ, Klem I, Kim RJ. MR angiography of the lower extremity circulation with protocols. In: Mukherjee D, Rajagopalan S, editors. CT and MR angiography of the peripheral circulation, 1st ed. London: Informa Healthcare; 2007.

    Google Scholar 

  39. Hilfiker PR, Quick HH, Pfammatter T, Schmidt M, Debatin JF. Three-dimensional MR angiography of a nitinol-based abdominal aortic stent graft: assessment of heating and imaging characteristics. Eur Radiol. 1999;9:1775–80.

    Article  CAS  PubMed  Google Scholar 

  40. Engellau L, Olsrud J, Brockstedt S, et al. MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysm: ferromagnetism, heating, artifacts and velocity mapping. J Magn Reson Imaging. 2000;12:112–21.

    Article  CAS  PubMed  Google Scholar 

  41. Weigel S, Tombach B, Maintz D, et al. Thoracic aortic stent graft: comparison of contrast-enhanced MR angiography and CT angiography in the follow-up: initial results. Eur Radiol. 2003;13:1628–34.

    Article  PubMed  Google Scholar 

  42. Hardy 2nd PT, Weil KM. A review of thermal MR injuries. Radiol Technol. 2010;8:606–9.

    Google Scholar 

  43. Shellock FG, Kanal E. Magnetic resonance: bioeffects, safety, and patient management. 1st ed. New York: Lippincott-Raven; 1996.

    Google Scholar 

  44. Nazarian S, Roguin A, Menekhem ZM, et al. Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 Tesla. Circulation. 2006;114:1277–84.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Syed MA, Carlson K, Murphy M, et al. Long-term safety of cardiac magnetic resonance imaging performed in the first few days after bare-metal stent implantation. J Magn Reson Imaging. 2006;24:1056–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernando, R.R., Bakhos, L., Syed, M.A. (2017). Magnetic Resonance Imaging in Acute and Chronic Limb Ischemia. In: Dieter, R., Dieter, Jr, R., Dieter, III, R., Nanjundappa, A. (eds) Critical Limb Ischemia. Springer, Cham. https://doi.org/10.1007/978-3-319-31991-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31991-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31989-6

  • Online ISBN: 978-3-319-31991-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics