River Algae pp 245-271 | Cite as

Diatoms as Bioindicators in Rivers

  • Eduardo A. LoboEmail author
  • Carla Giselda Heinrich
  • Marilia Schuch
  • Carlos Eduardo Wetzel
  • Luc Ector


Diatoms have been widely used to detect changes in streams and rivers water quality due to their specific sensibility to a variety of ecological conditions. Their tolerances and preferences for pH, conductivity, salinity, humidity, organic matter, saprobity, trophic state, oxygen requirements, nutrients, and current velocity in freshwater streams, rivers, lakes, wetlands, and estuaries have been defined, and diatoms have also been used in paleolimnological studies. Biotic indices using diatoms based on the relative abundance of the species weighted by their autoecological values have been developed worldwide, though indices of biotic integrity based on periphyton, diatoms, non-diatom “soft” algae, including cyanobacteria, macroalgae, and macrophytes assemblages have been also developed for biological monitoring. A new approach for water quality evaluation utilizing diatoms has been increasing significantly in recent years, by applying molecular techniques using DNA sequences. Molecular identification has the potential to provide revolutionary discoveries in taxonomy that may have great benefits for bioassessment. This chapter provides an overview of the state of the art of studies related to river quality evaluation using epilithic diatom communities worldwide. Most studies highlight the use of biotic indices to summarize floristic data to assess pollution effects on aquatic communities.


Biotic indices Epilithic diatom Molecular analysis River ecosystem Water quality 



The authors want to thank the Brazilian Research Council (CNPq) for financial support of the research conducted to develop the Trophic Water Quality Index (TWQI) for subtropical and temperate Brazilian lotic systems (MCT/CNPq/Universal—n° 14/2011).


  1. Álvarez-Blanco I, Blanco S, Cejudo-Figueiras C et al (2013) The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: design and validation. Environ Monit Assess 185:969–981CrossRefGoogle Scholar
  2. Arzet K, Krause-Dellin D, Steinberg C (1986) Acidification of four lakes in the Federal Republic of Germany as reflected by diatoms assemblages, cladocerans remains and sediment chemistry. In: Smol JP, Batarbee RW, Davis RB, Merilainen J (eds) Diatoms and lake acidity. Dr. Junk Publisher, Dordrecht, pp 227–250CrossRefGoogle Scholar
  3. Bae MJ, Kwon Y, Hwang SJ et al (2011) Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Ann Limnol Int J Lim 47:91–105CrossRefGoogle Scholar
  4. Bahls LM, Teply RS, Suplee MW (2008) Diatom biocriteria development and water quality assessment in Montana: a brief history and status report. Diatom Res 23:533–540CrossRefGoogle Scholar
  5. Bate GC, Smailes PA, Adams JB (2004) Benthic diatoms in the rivers and estuaries of South Africa. WRC Report N° TT 234/04, Water Research Commission, PretoriaGoogle Scholar
  6. Battarbee RW, Flower RJ, Juggins S et al (1997) The relationship between diatoms and surface water quality in the Hoylandet area of Nord-Trondelag, Norway. Hydrobiologia 348:69–80CrossRefGoogle Scholar
  7. Bellinger BJ, Cocquyt C, O’Reilly CM (2006) Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia 573:75–87CrossRefGoogle Scholar
  8. Beltrami ME, Ciutti F, Cappelletti C et al (2012) Diatoms from Alto Adige/Südtirol (Northern Italy): characterization of assemblages and their application for biological quality assessment in the context of the Water Framework Directive. Hydrobiologia 695:153–170CrossRefGoogle Scholar
  9. Bere T, Tundisi JG (2011) The effects of substrate type on diatom-based multivariate water quality assessment in a tropical river (Monjolinho), São Carlos, SP, Brazil. Water Air Soil Poll 216:391–409CrossRefGoogle Scholar
  10. Bes D, Ector L, Torgan LC, Lobo EA (2012) Composition of the epilithic diatom flora from a subtropical river, Southern Brazil. Iheringia Ser Bot 67:93–125Google Scholar
  11. Besse-Lototskaya A, Verdonschot PFM, Sinkeldam JA (2006) Uncertainty in diatom assessment: Sampling, identification and counting variation. Hydrobiologia 566:247–260CrossRefGoogle Scholar
  12. Bicudo CEM (2004) Taxonomy. Biota Neotropica 4:1–2CrossRefGoogle Scholar
  13. Birks HJB, Juggins S, Line JM (1990) Lake surface-water chemistry reconstructions from paleolimnological data. In: Mason BJ (ed) The surface waters acidification programme. Cambridge University Press, Cambridge, pp 301–313Google Scholar
  14. Böhm JS, Schuch M, Düpont A, Lobo EA (2013) Response of epilithic diatom communities to downstream nutrient increases in Castelhano Stream, Venâncio Aires City, RS, Brazil. J Environ Prot 4:20–26CrossRefGoogle Scholar
  15. Butcher RW (1947) Studies in the ecology of rivers: VII. The algae of organically enriched waters. J Ecol 35:186–191CrossRefGoogle Scholar
  16. Campeau S, Pienitz R, Héquette A (1999) Diatoms from the Beaufort Sea coast, southern Arctic Ocean (Canada): modern analogues for reconstructing Late Quaternary environments and relative sea levels. Bibliotheca Diatomologica. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  17. Cantonati M, Angeli N, Bertuzzi E et al (2012) Diatoms in springs of the Alps: spring types, environmental determinants, and substratum. Freshw Sci 31:499–524CrossRefGoogle Scholar
  18. Cemagref (1982) Etude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Q.E. Lyon A.F., Bassin Rhône-Méditerranée-Corse, LyonGoogle Scholar
  19. Cho IH, Hwang SJ, Kim BH et al (2014) Distribution of epilithic diatom communities in relation to land-use and water quality in the Geum river system, South Korea. J Korean Soc Water Qual 30:283–291CrossRefGoogle Scholar
  20. Cholnoky BJ (1959) Neue und seltene Diatomeen aus Afrika IV, Diatomeen aus der Kaap-Provinz. Österr Bot Z 106:1–69CrossRefGoogle Scholar
  21. Cholnoky BJ (1963) Beitrage zur Kenntnis der Ökologie der Diatomeen des Swakop-Flusses in Südwest-Afrika. Rev Bras Biol 3:233–260Google Scholar
  22. Cochero J, Licursi M, Gómez N (2015) Changes in the epipelic diatom assemblage in nutrient rich streams due to the variations of simultaneous stressors. Limnologica 51:15–23CrossRefGoogle Scholar
  23. Coring E (1999) Situation and developments of algal (diatom)-based techniques for monitoring rivers in Germany. In: Prygiel J, Whitton BA, Bukowska J (eds) Use of Algae for Monitoring Rivers III. Agence de l’Eau Artois-Picardie, Douai, pp 122–127Google Scholar
  24. Cumming BF, Smol JP (1993) Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). Hydrobiologia 269(270):179–196CrossRefGoogle Scholar
  25. Danielson TJ, Loftin CS, Tsomides L et al (2012) An algal model for predicting attainment of tiered biological criteria of Maine’s streams and rivers. Freshw Sci 31:318–340CrossRefGoogle Scholar
  26. Dell’Uomo A (1996) Assessment of water quality of an Apennine river as a pilot study for diatom-based monitoring of Italian watercourses. In: Whitton BA, Rott E (eds) Use of algae for monitoring rivers (II). Universtät Innsbruck, Innsbruck, Institut fur Botanik, pp 65–72Google Scholar
  27. Della Bella V, Pace G, Barile M et al (2012) Benthic diatom assemblages and their response to human stress in small-sized volcanic-siliceous streams of central Italy (Mediterranean eco-region). Hydrobiologia 695:207–222CrossRefGoogle Scholar
  28. Denys L (1991a) A check-list of the diatoms in the Holocene deposits of the Western Belgian Coastal plain in a survey of their apparent ecological requirements I: Introduction, ecological code and complete list. Ministère des Affaires Economiques, Service Géologique de Belgique, BrusselsGoogle Scholar
  29. Denys L (1991b) A check-list of the diatoms in the Holocene deposits of the Western Belgian Coastal plain in a survey of their apparent ecological requirements II: Centrales. Ministère des Affaires Economiques, Service Géologique de Belgique, BrusselsGoogle Scholar
  30. Descy JP, Coste M (1990) Utilisation des diatomées benthiques pour l'évaluation de la qualité des eaux courantes. Rapport Final Contract CEE B 71-23, CEMAGREF, BordeauxGoogle Scholar
  31. Descy JP, Coste M (1991) A test of methods for assessing water quality based on diatoms. Verh Internat Verein Theor Angew Limnol 24:2112–2116Google Scholar
  32. Dixit SS, Dixit AS, Smol JP (1990) Paleolimnological investigation of three manipulated lakes from Sundbury, Canada. Hydrobiologia 214:245–252CrossRefGoogle Scholar
  33. Dreßler M, Verweij G, Kistenich S et al (2015) Applied use of taxonomy: lessons learned from the first German intercalibration exercise for benthic diatoms. Acta Bot Croat 74(2):211–232Google Scholar
  34. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 61:53–73Google Scholar
  35. Duong TT, Feurtet-Mazel A, Coste M et al (2007) Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecol Indic 7:839–851CrossRefGoogle Scholar
  36. Düpont A, Lobo EA, Costa AB et al (2007) Avaliação da qualidade da água do Arroio do Couto, Santa Cruz do Sul, RS, Brasil. Cad Pesqu Ser Biol 19:56–74Google Scholar
  37. Ector L, Rimet F (2005) Using bioindicators to assess rivers in Europe: an overview. In: Lek S, Scardi M, Verdonschot PFM, Descy JP, Park YS (eds) Modelling community structure in freshwater ecosystems. Springer Verlag, Heidelberg, pp 7–19Google Scholar
  38. Eloranta P (1990) Periphytic diatoms in the Acidification Project Lakes. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer Verlag, Heidelberg, pp 985–994CrossRefGoogle Scholar
  39. Feio MJ, Aguiar FC, Almeida SFP et al (2014) Least disturbed condition for European Mediterranean rivers. Sci Total Environ 476–477:745–756CrossRefGoogle Scholar
  40. Fetscher AE, Stancheva R, Kociolek JP et al (2014) Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination. J Appl Phycol 26:433–450CrossRefGoogle Scholar
  41. Fjerdingstad E (1964) Pollution of stream estimated by benthal phytomicro-organisms. I. A saprobic system based on communities of organisms and ecological factors. Int Rev Gesamten Hydrobiol 49:63–131CrossRefGoogle Scholar
  42. Fore L, Grafe C (2002) Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshw Biol 47:2015–2037CrossRefGoogle Scholar
  43. Gell PA (1997) The development of a diatom database for inferring lake salinity, western Victoria, Australia: towards a quantitative approach for reconstructing past climates. Aust J Bot 45:389–423CrossRefGoogle Scholar
  44. Gillett N, Pan YD, Parker C (2009) Should only live diatoms be used in the bioassessment of small mountain streams? Hydrobiologia 620:135–147CrossRefGoogle Scholar
  45. Gómez N, Licursi M (2001) The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquat Ecol 35:173–181CrossRefGoogle Scholar
  46. Gómez N, Licursi M (2003) Abnormal forms in Pinnularia gibba (Bacillariophyceae) in a polluted lowland stream from Argentina. Nova Hedwigia 77:389–398CrossRefGoogle Scholar
  47. Gómez N, Licursi M, Bauer DE et al (2003) Reseña sobre las modalidades de estudio mediante la utilización de microalgas en la evaluación y monitoreo de algunos sistemas lóticos pampeanos bonaerenses. Bol Soc Argent Bot 38:93–103Google Scholar
  48. Gómez N, Sierra MV, Cortelezzi A et al (2008) Effects of discharges from the textile industry on the biotic integrity of benthic assemblages. Ecotoxicol Environ Saf 69:472–479CrossRefGoogle Scholar
  49. Gómez N, Sierra MV, Cochero J et al (2009) Epipelic biofilms as indicators of environmental changes in lowland fluvial systems. In: Bailey WC (ed) Biofilms: formation, development and properties. Nova, La plata, pp 259–290Google Scholar
  50. Griffith MB, Hill BH, McCormick FH et al (2005) Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecol Indic 5:117–136CrossRefGoogle Scholar
  51. Håkansson S (1993) Numerical methods for the inference of pH variations in mesotrophic and eutrophic lakes in southern Sweden—a progress report. Diatom Res 8:349–370CrossRefGoogle Scholar
  52. Heinrich CG, Leal VL, Schuch M et al (2014) Epilithic diatoms in headwater areas of the hydrographical sub-basin of the Andreas Stream, RS, Brazil, and their relation with eutrophication processes. Acta Limnol Bras 26:347–355CrossRefGoogle Scholar
  53. Hering D, Johnson RK, Kramm S et al (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51:1757–1785CrossRefGoogle Scholar
  54. Hermany G, Schwarzbold A, Lobo EA et al (2006) Ecology of the epilithic diatom community in a low-order stream system of the Guaíba hydrographical region: subsidies to the environmental monitoring of southern Brazilian aquatic systems. Acta Limnol Bras 18:9–27Google Scholar
  55. Hill BH, Herlihy AT, Kaufmann PR et al (2000) Use of periphyton assemblage data as an index of biotic integrity. J N Am Benthol Soc 19:50–67CrossRefGoogle Scholar
  56. Hill BH, Herlihy AT, Kaufmann PR et al (2003) Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecol Indic 2:325–338CrossRefGoogle Scholar
  57. Hofmann G (1994) Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  58. Hwang SJ, Kim NY, Yoon SA et al (2011) Distribution of benthic diatoms in Korean rivers and streams in relation to environmental variables. Ann Limnol Int J Lim 47:15–33CrossRefGoogle Scholar
  59. INDEC (2010) Censo Nacional de Población, Hogares y Viviendas 2010—Instituto Nacional de Estadística y Censos. Accessed 18 August 2015
  60. Juggins S (1992) Diatoms in the Thames Estuary. Ecology, Palaeoecology, and Salinity Transfer Function. Bibliotheca Diatomologica. Schweizerbart Science Publishers, Stuttgart, EnglandGoogle Scholar
  61. Kahlert M, Albert RL, Anttila EL et al (2009) Harmonization is more important than experience — results of the first Nordic–Baltic diatom intercalibration exercise 2007 (stream monitoring). J Appl Phycol 21:471–482CrossRefGoogle Scholar
  62. Kalyoncu H, Cicek NL, Akkoz C et al (2009) Comparative performance of diatom indices in aquatic pollution assessment. Afr J Agric Res 4:1032–1040Google Scholar
  63. Katoh K (1991) A comparative study on some pollution indices using diatoms. Diatom 6:11–17Google Scholar
  64. Kelly MG, Whitton BA (1995) The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444CrossRefGoogle Scholar
  65. Kelly MG, Cazaubon A, Coring E et al (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224CrossRefGoogle Scholar
  66. Kelly M, Juggins S, Guthrie R et al (2008) Assessment of ecological status in U.K. rivers using diatoms. Freshw Biol 53:403–422Google Scholar
  67. Kelly M, Bennett C, Coste M et al (2009) A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621:169–182CrossRefGoogle Scholar
  68. Kermarrec L, Ector L, Bouchez A et al (2011) A preliminary phylogenetic analysis of the Cymbellales based on 18S rDNA gene sequencing. Diatom Res 26:305–315CrossRefGoogle Scholar
  69. Kermarrec L, Franc A, Rimet F et al (2013) Next generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms. Mol Ecol Resour 13:607–619CrossRefGoogle Scholar
  70. Kobayasi H (1985) Ultrastructural differences in certain taxonomically difficult species of Nitzschia section Lanceolatae in Japan. In: Hara H (ed) Origin and evolution of diversity in plants and plant community. Academia, Tokyo, pp 304–313Google Scholar
  71. Kobayasi H, Mayama S (1989) Evaluation of river water quality by diatoms. Korean J Phycol 4:121–133Google Scholar
  72. Kolkwitz R (1950) Ökologie der Saprobien. Schriftenreihe des Vereins für Wasser. Boden und Lufthygiene, StuttgartGoogle Scholar
  73. Kolkwitz R, Marsson M (1908) Ökologie der tierischen Saprobien. Beiträge zur Lehre von des biologischen Gewasserbeurteilung. Int Rev Gesamten Hydrobiol 2:126–152CrossRefGoogle Scholar
  74. Lane CR, Brown MT (2007) Diatoms as indicators of isolated herbaceous wetland condition in Florida, USA. Ecol Indic 7:521–540CrossRefGoogle Scholar
  75. Lange-Bertalot H (1979) Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64:285–304Google Scholar
  76. Leclercq L, Maquet B (1987) Deux nouveaux indices chimique et diatomique de qualité d'eau courante: application au Samson et à ses affluents (Bassin de la Meuse Belge); comparaison avec d'autres indices chimiques, biocénotiques et diatomiques (document de travail 28). Institut Royal des Sciences Naturelles de Belgique, BruxellesGoogle Scholar
  77. Lee SW, Hwang SJ, Lee JK et al (2011) Overview and application of the National Aquatic Ecological Monitoring Program (NAEMP) in Korea. Ann Limnol Int J Lim 47:3–14CrossRefGoogle Scholar
  78. Leland HV, Porter SD (2000) Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshw Biol 44:279–301CrossRefGoogle Scholar
  79. Lenoir A, Coste M (1996) Development of a practical diatom index of overall water quality applicable to the French National Water Board Network. In: Whitton BA, Rott E (eds) Use of Algae for Monitoring River II. Universität Innsbruck, Innsbruck, Institut für Botanik, pp 29–43Google Scholar
  80. Li S, Gu S, Tan X et al (2009) Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone. J Hazard Mater 65:317–324CrossRefGoogle Scholar
  81. Licursi M, Gómez N (2002) Benthic diatom and some environmental condition in three lowland streams of Pampean Plain. Ann Limnol 38:109–118CrossRefGoogle Scholar
  82. Licursi M, Gómez N (2004) Aplicación de índices bióticos en la evaluación de la calidad del agua en sistemas lóticos de la llanura pampeana a partir del empleo de diatomeas. Biol Acuat 21:31–49Google Scholar
  83. Liebmann H (1951) Handbuch der Frischwasser- und Abswasserbiologie. Verlag Oldenbourg, MünchenGoogle Scholar
  84. Lobo EA (2013) O perifíton como indicador da qualidade da água. In: Schwarzbold A, Burliga AL, Torgan LC (eds) Ecologia do Perifíton. RiMa Editora, São Carlos, pp 205–233Google Scholar
  85. Lobo EA, Kitazawa S, Kobayasi H (1990) The use of scanning electron microscopy as a necessary complement of light microscopy diatom examination for ecological studies. Diatom 5:33–43Google Scholar
  86. Lobo EA, Katoh K, Aruga Y (1995) Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo Metropolitan area. Freshw Biol 34:191–204CrossRefGoogle Scholar
  87. Lobo EA, Callegaro VLM, Oliveira MA et al (1996) Pollution tolerant diatoms from lotic systems in the Jacuí Basin, Rio Grande do Sul, Brasil. Iheringia Ser Bot 47:45–72Google Scholar
  88. Lobo EA, Callegaro VLM, Bender EP (2002) Utilização de Algas Diatomáceas Epilíticas como Indicadores da Qualidade da Água em Rios e Arroios da Região Hidrográfica do Guaíba, RS, Brasil. EDUNISC, Santa Cruz do SulGoogle Scholar
  89. Lobo EA, Callegaro VLM, Hermany G et al (2004a) Review of the use of microalgae in South America for monitoring rivers, with special reference to diatoms. Vie Milieu 54:105–114Google Scholar
  90. Lobo EA, Callegaro VLM, Hermany G et al (2004b) Use of epilithic diatoms as bioindicator from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnol Bras 16:25–40Google Scholar
  91. Lobo EA, Wetzel CE, Ector L et al (2010) Response of epilithic diatom communities to environmental gradients in subtropical temperate Brazilian rivers. Limnetica 29:323–340Google Scholar
  92. Lobo EA, Wetzel CE, Schuch M et al (2014) Diatomáceas epilíticas como indicadores da qualidade da água em sistemas lóticos subtropicais e temperados brasileiros. EDUNISC, Santa Cruz do SulGoogle Scholar
  93. Lobo EA, Schuch M, Heinrich CG et al (2015) Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess 187:1–13Google Scholar
  94. López van Oosterom MV, Ocón CS, Brancolini F et al (2013) Trophic relationships between macroinvertebrates and fish in a pampean lowland stream (Argentina). Iheringia Ser Zool 103:57–65Google Scholar
  95. Lowe RL (1974) Environmental Requirements and Pollution Tolerance of Freshwater Diatoms. National Environmental Research Center, CincinnatiGoogle Scholar
  96. Lowe WH (2002) Landscape-scale spatial population dynamics in human-impacted stream systems. Environ Manage 30:225–233CrossRefGoogle Scholar
  97. Lücking R (2008) Taxonomy: a discipline on the brink of extinction. Are DNA barcode scanners the future of biodiversity research? Arch Sci 61:75–88Google Scholar
  98. Mancini L (2003) Bioindicatori: necessità di nuovi sviluppi a seguito della attuazione del decreto legislative 152/99 e del recepimento della direttiva 2000/60/CE Water Framework Directive. Atti dela 7th Conferenza Nazionale dele Agenzie Ambientali, MilanoGoogle Scholar
  99. Mancini L (2006) Organization of biological monitoring in the European Union. In: Ziglio G, Siligardi M, Flaim F (eds) Biological Monitoring of Rivers: Applications and Perspectives. Water Quality Measurements Series. John Wiley & Sons, Chichester, pp 171–202CrossRefGoogle Scholar
  100. Mann DG, Sato S, Trobajo R et al (2010) DNA barcoding for species identification and discovery in diatoms. Cryptogamie Algol 31:557–577Google Scholar
  101. Manoylov KM (2014) Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J Phycol 50:409–424CrossRefGoogle Scholar
  102. Manoylov KM, Marsh T, Stevenson RJ (2009) Testing molecular tools for assessment of taxonomic composition of a benthic algal community. Nova Hedwigia 135:121–136Google Scholar
  103. Mayama S, Katoh K, Omori H et al (2011) Progress towards construction of an international web-based educational system featuring improved SimRiver for understanding of the river environment. Asian J Biol Educ 5:2–14Google Scholar
  104. Michels-Estrada A (2003) Ökologie und Verbreitung von Kieselalgen in Flieβgewässern Costa Rica als Grundlage für eine biologische Gewässergütebeurteilung in den Tropen. Diss Bot 377:244–257Google Scholar
  105. Morales EA, Siver PA, Trainor FR (2001) Identification of diatoms (Bacillariophyceae) during ecological assessments: comparison between light microscopy and scanning electron microscopy techniques. P Acad Nat Sci Phila 151:95–103CrossRefGoogle Scholar
  106. Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Evol Syst 35:89–111CrossRefGoogle Scholar
  107. Oeding S, Taffs KH (2015) Are diatoms a reliable and valuable bio-indicator to assess sub-tropical river ecosystem health? Hydrobiologia 758:151–169CrossRefGoogle Scholar
  108. Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water quality restoration and stream managements. Freshw Biol 29:243–258CrossRefGoogle Scholar
  109. Pantle R, Buck H (1955) Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas Wasserfach Wasser Abwasser 96:609–620Google Scholar
  110. Pipp E (2002) A regional diatom-based trophic state indication system for running water sites in Upper Austria and its over-regional applicability. Verh Internat Verein Limnol 27:3376–3380Google Scholar
  111. Potapova MG (2011) Patterns of diatom distribution in relation to salinity. In: Seckbach J, Kociolek JP (eds) The Diatom World, Cellular Origin. Life in Extreme Habitats and Astrobiology. Springer, Dordrecht, pp 313–332CrossRefGoogle Scholar
  112. Potapova M, Charles DF (2007) Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol Indic 7:48–70CrossRefGoogle Scholar
  113. Potapova MG, Charles DF, Ponader KC et al (2004) Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517:25–41CrossRefGoogle Scholar
  114. Pressey RL, Humphries CJ, Margules CR et al (1993) Beyond opportunism: key principles for systematic reserve selection. Trends Ecol Evol 8:124–128CrossRefGoogle Scholar
  115. Renberg I, Hellberg T (1982) The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11:341–348Google Scholar
  116. Rimet F (2012) Recent views on river pollution and diatoms. Hydrobiologia 683:1–24CrossRefGoogle Scholar
  117. Roberts D, McMinn A (1998) A weighted-averaging regression and calibration model for inferring lake water salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. J Paleolimnol 19:57–78CrossRefGoogle Scholar
  118. Robinson CT, Kawecka B (2005) Benthic diatoms of an Alpine stream/lake network in Switzerland. Aquat Sci 67:492–506CrossRefGoogle Scholar
  119. Rott E, Hofmann G, Pall K et al (1997) Indikationslisten für Aufwuschalgen in Österreischen Fliessgewässern. Teil 1: Saprobielle Indikation. Bundesministerium für Land und Forstwirtschaft, Wasserwirtschaftkataster.Google Scholar
  120. Rott E, Pfister P, Van Dam H, Pipp E, Pall K, Binder N, Ortler K (1999) Indikationslisten für Aufwuchalgen in Österreischen Fliessgewässern. Teil 2: Trophieindikation und autökologische Anmerkungen, Bundesministerium für Land und Forstwirtschaft, Wasserwirtschaftkataster.Google Scholar
  121. Rott E, Pipp E, Pfister P (2003) Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algol Stud 110:91–115CrossRefGoogle Scholar
  122. Rumeau A, Coste M (1988) Initiation à la systématique des diatomées d’eau douce pour l’utilisation pratique d’un indice diatomique générique. Bulletin Français de la Pêche et de la Pisciculture. Conseil supérieur de la pêche, ParisGoogle Scholar
  123. Salomoni SE, Rocha O, Callegaro VL, Lobo EA (2006) Epilithic diatoms as indicators of water quality in the Gravataí river, Rio Grande do Sul, Brazil. Hydrobiologia 555:233–246CrossRefGoogle Scholar
  124. Salomoni SE, Rocha O, Hermany G et al (2011) Application of water quality biological indices using diatoms as bioindicators in Gravataí River, RS, Brazil. Braz J Biol 71:949–959CrossRefGoogle Scholar
  125. Schiefele S, Kohmann F (1993) Bioindikation der Trophie in Fliessgewässern. In: Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. Forschungsbericht, Nr. 102 01 504. Bayerisches Landesamt für Wasserwirtschaft, MünchenGoogle Scholar
  126. Schuch M, Abreu E Jr, Lobo EA (2012) Water quality evaluation of urban streams in Santa Cruz do Sul city, RS, Brazil. Bioikos 26:3–12Google Scholar
  127. Schuch M, Oliveira MA, Lobo EA (2015) Spatial response of epilithic diatom communities to downstream nutrient increases. Water Environ Res 87:547–558CrossRefGoogle Scholar
  128. Seegert G (2000) The development, use, and misuse of biocriteria with an emphasis on the index of biotic integrity. Environ Sci Policy 3:51–58CrossRefGoogle Scholar
  129. Sierra MV, Gómez N (2007) Structural characteristics and oxygen consumption of the epipelic biofilms in three lowland streams exposed to different land uses. Water Air Soil Pollut 186:115–127CrossRefGoogle Scholar
  130. Sládeček V (1965) The future of the saprobity system. Hydrobiologia 25:518–537CrossRefGoogle Scholar
  131. Sládeček V (1973) System of water quality from the biological point of view. Archiv für Hydrobiologie Ergebnisse Limnol 7:1–218Google Scholar
  132. Sluys R (2013) The unappreciated, fundamentally analytical nature of taxonomy and the implications for the inventory of biodiversity. Biodivers Conserv 22:1095–1105CrossRefGoogle Scholar
  133. Smith MA (1990) The ecophysiology of epilithic diatom communities of acid lakes in Galoway, southwest Scotland. Phil Trans R Soc Lond 327:251–256CrossRefGoogle Scholar
  134. Smucker NJ, Vis ML (2013) Can pollution severity affect diatom succession in streams and could it matter for stream assessments? J Freshw Ecol 28:329–338CrossRefGoogle Scholar
  135. Smucker NJ, Becker M, Detenbeck NE et al (2013) Using algal metrics and biomass to evaluate multiple ways of defining concentration-based nutrient criteria in streams and their ecological relevance. Ecol Indic 32:51–61CrossRefGoogle Scholar
  136. Snoeijs P (1994) Distribution of epiphytic diatom species composition, diversity and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Res 9:189–211CrossRefGoogle Scholar
  137. Stevenson J (2014) Ecological assessments with algae: a review and synthesis. J Phycol 50:437–461CrossRefGoogle Scholar
  138. Stevenson RJ, Pan Y, Manoylov KM et al (2008) Development of diatom indicators of ecological conditions for streams of the western US. J North Am Benthol Soc 27:1000–1016CrossRefGoogle Scholar
  139. Stevenson RJ, Pan Y, Van Dam H (2010) Assessing environmental conditions in rivers and streams with diatoms. In: Smol JP, Stoermer EF (eds) The Diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 57–85CrossRefGoogle Scholar
  140. Stevenson RJ, Zalack JT, Wolin J (2013) A multimetric index of lake diatom condition based on surface-sediment assemblages. Freshw Sci 32:1005–1025CrossRefGoogle Scholar
  141. Stoddard JL, Larsen DP, Hawkins CP et al (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276CrossRefGoogle Scholar
  142. Szczepocka E, Kruk A, Rakowska B (2015) Can tolerant diatom taxa be used for effective assessments of human pressure? River Res Appl 31:368–378CrossRefGoogle Scholar
  143. Tan X, Sheldon F, Bunn ES et al (2013) Using diatom indices for water quality assessment in a subtropical river, China. Environ Sci Pollut Res 20:4164–4175CrossRefGoogle Scholar
  144. Tan X, Ma P, Xia X, Zhang Q (2014) Spatial pattern of benthic diatoms and water quality assessment using diatom indices in a subtropical river, China. Clean - Soil, Air, Water 42:20–28CrossRefGoogle Scholar
  145. Tan X, Ma P, Bunn SE, Zhang Q (2015) Development of a benthic diatom index of biotic integrity (BD-IBI) for ecosystem health assessment of human dominant subtropical rivers. China J Environ Manage 151:286–294CrossRefGoogle Scholar
  146. Taylor JC, de la Rey PA, van Rensburg L (2005) Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. Afr J Aquat Sci 30:65–75CrossRefGoogle Scholar
  147. Ter Braak CFJ, Van Dam H (1989) Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223CrossRefGoogle Scholar
  148. Tornés E, Cambra J, Gomà J et al (2007) Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Ann Limnol-Int J Lim 43:1–11CrossRefGoogle Scholar
  149. Underwood GJ, Philips JS, Saunders K (1998) Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur J Phycol 33:173–183CrossRefGoogle Scholar
  150. Union E (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun 327:1–73Google Scholar
  151. Urrea G, Sabater S (2009) Epilithic diatom assemblages and their relationship to environmental characteristics in an agricultural watershed (Guadiana River, SW Spain). Ecol Indic 9:693–703CrossRefGoogle Scholar
  152. Van Dam H (1997) Partial recovery of moorland pools from acidification: indications by chemistry and diatoms. Neth J of Aquatic Ecol 30:203–218CrossRefGoogle Scholar
  153. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Neth J Aquatic Ecol 28:117–133CrossRefGoogle Scholar
  154. Visco JA, Apothéloz-Perret-Gentil L, Cordonier A et al (2015) Environmental monitoring: inferring the diatom index from next-generation sequencing data. Environ Sci Technol 49:7606–7613CrossRefGoogle Scholar
  155. Vyverman W, Vyverman R, Hodgson D et al (1995) Diatoms from Tasmanian mountain lakes: a reference data-set (TASDIAT) for environmental reconstruction and a systematic and autecological study. Bibliotheca Diatomologica. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  156. Wan Maznah WO, Mansor M (2002) Aquatic pollution assessment based on attached diatom communities in the Pinang River Basin, Malaysia. Hydrobiologia 487:229–241CrossRefGoogle Scholar
  157. Watanabe T, Asai K (1992) Simulation of organic water pollution using highly prevailing diatom taxa (1). Diatom assemblage in which the leading taxon belongs to Achnanthes, Anomoeoneis, Aulacoseira or Melosira. Diatom 7:13–19Google Scholar
  158. Watanabe T, Asai K, Houki A (1985) Epilithic diatom assemblage index to organic pollution (DAIpo) and its ecological significance. Annual Report of Graduate Division of Human Culture, Doctoral Degree Program, Nara Women's University, NaraGoogle Scholar
  159. Watanabe T, Asai K, Houki A (1988) Numerical water quality monitoring of organic pollution using diatom assemblages. In: Round FE (ed) Proceedings of the Ninth International Diatom Symposium 1986. Koeltz Scientific Books, KoenigsteinGoogle Scholar
  160. Wetzel CE, Ector L (2014a) Taxonomy, distribution and autecology of Planothidium bagualensis sp. nov. (Bacillariophyta) a common monoraphid species from southern Brazilian rivers. Phytotaxa 156:201–210CrossRefGoogle Scholar
  161. Wetzel CE, Ector L (2014b) Planothidium lagerheimii comb. nov. (Bacillariophyta, Achnanthales) a forgotten diatom from South America. Phytotaxa 188:261–267CrossRefGoogle Scholar
  162. Wetzel CE, Ector L, Van de Vijver B et al (2015) Morphology, typification and critical analysis of some ecologically important small naviculoid species (Bacillariophyta). Fottea 15:203–234CrossRefGoogle Scholar
  163. Whittaker RH (1952) A study of summer foliage insect communities in the Great Smoky Mountains. Ecol Monogr 22:1–144CrossRefGoogle Scholar
  164. Wilson SE, Cumming BF, Smol JP (1994) Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity reconstructions. J Paleolimnol 12:197–221CrossRefGoogle Scholar
  165. Wilson SE, Smol JP, Sauchyn DJ (1997) A Holocene paleosalinity diatom record from southwestern Saskatchewan, Canada: Harris lake revisited. J Paleolimnol 17:23–31CrossRefGoogle Scholar
  166. Yoccoz NG (2012) The future of environmental DNA in ecology. Mol Ecol 21:2031–2038CrossRefGoogle Scholar
  167. Zalack JT, Smucker NJ, Vis ML (2010) Development of a diatom index of biotic integrity for acid mine drainage impacted streams. Ecol Indic 10:287–295CrossRefGoogle Scholar
  168. Zelinka M, Marvan P (1961) Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Arch Hydrobiol 57:389–407Google Scholar
  169. Ziemann H (1971) Die Wirkung des Salzgehaltes auf die Diatomenflora als Grundlage für eine biologische Analyse und Klassifikation der Binnengewässer. Limnologica 8:505–525Google Scholar
  170. Ziemann H (1991) Veränderungen der Diatomeenflora der Werra unter dem Einfluss des Salzgehaltes. Acta Hydrochim Hydrobiol 19:159–174CrossRefGoogle Scholar
  171. Zimmermann J, Jahn R, Gemeinholzer B (2011) Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org Divers Evol 11:173–192CrossRefGoogle Scholar
  172. Zimmermann J, Glöockner G, Jahn R et al (2015) Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Mol Ecol Resour 15:526–542CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eduardo A. Lobo
    • 1
    Email author
  • Carla Giselda Heinrich
    • 1
  • Marilia Schuch
    • 1
  • Carlos Eduardo Wetzel
    • 2
  • Luc Ector
    • 2
  1. 1.Laboratory of LimnologyUniversity of Santa Cruz do SulSanta Cruz do SulBrazil
  2. 2.Department Environmental Research and Innovation (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg

Personalised recommendations