Skip to main content

A Role of MicroRNAs in Cell Differentiation During Gonad Development

Part of the Results and Problems in Cell Differentiation book series (RESULTS,volume 58)

Abstract

MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads’ physiology and managing reproduction disorders.

Keywords

  • Ovary
  • Testis
  • miRNA
  • Mouse
  • Fertility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-31973-5_12
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-31973-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4

References

  • Abdelfattah AM, Choi MY (2015) Update on non-canonical microRNAs. Biomol Concepts 5:275–287

    Google Scholar 

  • Adham IM, Nayernia K, Burkhardt-Gottges E et al (2001) Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol Hum Reprod 7:513–520

    CAS  PubMed  CrossRef  Google Scholar 

  • Åkerfelt M, Henriksson E, Laiho A et al (2008) Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci U S A 105:11224–11229

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Akiyama T, Kawasaki Y (2006) Wnt signalling and the actin cytoskeleton. Oncogene 25:7538–7544

    CAS  PubMed  CrossRef  Google Scholar 

  • Bao J, Li D, Wang L et al (2012) MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem 287:21686–21698

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barrionuevo F, Bagheri-Fam S, Klattig J et al (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74:195–201

    CAS  PubMed  CrossRef  Google Scholar 

  • Barrios F, Filipponi D, Pellegrini M et al (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123:871–880

    CAS  PubMed  CrossRef  Google Scholar 

  • Bellvé AR, Cavicchia JC, Millette CF et al (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 74:68–85

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ben-Ami I, Armon L, Freimann S et al (2009) EGF-like growth factors as LH mediators in the human corpus luteum. Hum Reprod 24:176–184

    CAS  PubMed  CrossRef  Google Scholar 

  • Björk JK, Sandqvist A, Elsing AN et al (2010) miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137:3177–3184

    PubMed  CrossRef  CAS  Google Scholar 

  • Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18–26

    CAS  PubMed  CrossRef  Google Scholar 

  • Bouniol-Baly C, Hamraoui L, Guibert J et al (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 587:580–587

    CrossRef  Google Scholar 

  • Boyer A, Goff AK, Boerboom D (2010) WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab 21:25–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Bristol-Gould SK, Hutten CG, Sturgis C et al (2005) The development of a mouse model of ovarian endosalpingiosis. Endocrinology 146:5228–5236

    CAS  PubMed  CrossRef  Google Scholar 

  • Bristol-Gould SK, Kreeger PK, Selkirk CG et al (2006) Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol 298:132–148

    CAS  PubMed  CrossRef  Google Scholar 

  • Brunet S, Maro B (2005) Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130:801–811

    CAS  PubMed  CrossRef  Google Scholar 

  • Buchold GM, Coarfa C, Kim J et al (2010) Analysis of microRNA expression in the prepubertal testis. PLoS One 5:e15317

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Carletti MZ, Fiedler SD, Christenson LK (2010) MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 83:286–295

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chang Y-F, Lee-Chang JS, Imam JS et al (2012) Interaction between microRNAs and actin-associated protein Arpc5 regulates translational suppression during male germ cell differentiation. Proc Natl Acad Sci U S A 109:5750–5755

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cheloufi S, Dos Santos CO, Chong MMW, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–589

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen Y, Jefferson WN, Newbold RR et al (2007) Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148:3580–3590

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen Y, Breen K, Pepling ME (2009) Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J Endocrinol 202:407–417

    CAS  PubMed  CrossRef  Google Scholar 

  • Chong MMW, Zhang G, Cheloufi S et al (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24:1951–1960

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cifuentes D, Xue H, Taylor DW et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328:1694–1698

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cui XS, Sun SC, Kang YK, Kim NH (2013) Involvement of microRNA-335-5p in cytoskeleton dynamics in mouse oocytes. Reprod Fertil Dev 25:691–699

    CAS  PubMed  CrossRef  Google Scholar 

  • Dai L, Tsai-Morris C-H, Sato H et al (2011) Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 286:44306–44318

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dai A, Sun H, Fang T et al (2013) MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587:2474–2482

    CAS  PubMed  CrossRef  Google Scholar 

  • de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798

    PubMed  Google Scholar 

  • Drummond AE, Findlay JK (1999) The role of estrogen in folliculogenesis. Mol Cell Endocrinol 151:57–64

    CAS  PubMed  CrossRef  Google Scholar 

  • Du X-Y, Huang J, Xu L-Q et al (2012) The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways. Reprod Biol Endocrinol 10:58

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • El-Hefnawy T, Zeleznik AJ (2001) Synergism between FSH and activin in the regulation of proliferating cell nuclear antigen (PCNA) and cyclin D2 expression in rat granulosa cells. Endocrinology 142:4357–4362

    CAS  PubMed  CrossRef  Google Scholar 

  • Ender C, Krek A, Friedländer MR et al (2008) A Human snoRNA with MicroRNA-Like Functions. Mol Cell 32:519–528

    CAS  PubMed  CrossRef  Google Scholar 

  • Epifano O, Liang LF, Familari M et al (1995) Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 121:1947–1956

    CAS  PubMed  Google Scholar 

  • Ewen KA, Koopman P (2010) Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol 323:76–93

    CAS  PubMed  CrossRef  Google Scholar 

  • Feng R, Sang Q, Zhu Y et al (2015) MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 5:8689

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 79:1030–1037

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fortune JE, Cushman RA, Wahl CM, Kito S (2000) The primordial to primary follicle transition. Mol Cell Endocrinol 163:53–60

    CAS  PubMed  CrossRef  Google Scholar 

  • Gallardo T, Shirley L, John GB, Castrillon DH (2007) Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 417:413–417

    CrossRef  CAS  Google Scholar 

  • García-López J, Hourcade JDD, Del Mazo J (2013) Reprogramming of microRNAs by adenosine-to-inosine editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos. Nucleic Acids Res 41:5483–5493

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Greenlee AR, Shiao M-S, Snyder E et al (2012) Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 7:e46359

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    CAS  PubMed  CrossRef  Google Scholar 

  • Grossman H, Chuderland D, Ninio-Many L et al (2015) A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. FASEB J 29(8):3206–3216

    CAS  PubMed  CrossRef  Google Scholar 

  • Guzel Y, Nur Şahin G, Sekeroglu M, Deniz A (2014) Recombinant activin A enhances the growth and survival of isolated preantral follicles cultured three-dimensionally in extracellular basement matrix protein (matrigel) under serum-free conditions. Gynecol Endocrinol 30:388–391

    CAS  PubMed  CrossRef  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    CAS  PubMed  CrossRef  Google Scholar 

  • Hasuwa H, Ueda J, Ikawa M, Okabe M (2013) MiR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 341:71–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Havens MA, Reich AA, Duelli DM, Hastings ML (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hayashi K, Chuva de Sousa Lopes SM, Kaneda M et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • He Z, Jiang J, Kokkinaki M et al (2013) MiRNA-20 and MiRNA-106a Regulate Spermatogonial Stem Cell Renewal at the Post-transcriptional Level via Targeting STAT3 and Ccnd1. Stem Cells 31:1–22

    CrossRef  CAS  Google Scholar 

  • Hillier SG (1994) Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod 9:188–191

    CAS  PubMed  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    CAS  PubMed  CrossRef  Google Scholar 

  • Hong X, Luense LJ, McGinnis LK et al (2008) Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149:6207–6212

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huszar JM, Payne CJ (2013) MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod 88:15

    PubMed  CrossRef  CAS  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    CAS  PubMed  CrossRef  Google Scholar 

  • Jamin SP, Arango NA, Mishina Y et al (2002) Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet 32:408–410

    CAS  PubMed  CrossRef  Google Scholar 

  • Jiang L, Chang J, Zhang Q et al (2013) MicroRNA hsa-miR-125a-3p activates p53 and induces apoptosis in lung cancer cells. Cancer Invest 31:538–544

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaneda M, Tang F, O’Carroll D et al (2009) Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2:9

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kang MK, Han SJ (2011) Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 44:147–157

    CAS  PubMed  CrossRef  Google Scholar 

  • Kezele P, Skinner MK (2003) Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology 144:3329–3337

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim B-M, Choi MY (2012) Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells. Biochem Biophys Res Commun 462:183–189

    CrossRef  CAS  Google Scholar 

  • Kim G, Georg INA, Scherthan H et al (2010a) Dicer is required for Sertoli cell function and survival. Int J Dev Biol 875:867–875

    CrossRef  CAS  Google Scholar 

  • Kim Y-K, Heo I, Kim VN (2010b) Modifications of small RNAs and their associated proteins. Cell 143:703–709

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim YJ, Ku S-Y, Kim YY et al (2013) MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum Reprod 28(11):3050–3061

    CAS  PubMed  CrossRef  Google Scholar 

  • Kipp JL, Kilen SM, Bristol-Gould S et al (2007) Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 148:1968–1976

    CAS  PubMed  CrossRef  Google Scholar 

  • Kobayashi A, Chang H, Chaboissier M-C et al (2005) Sox9 in testis determination. Ann N Y Acad Sci 1061:9–17

    CAS  PubMed  CrossRef  Google Scholar 

  • Korhonen HM, Meikar O, Yadav RP et al (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kotaja N (2014) MicroRNAs and spermatogenesis. Fertil Steril 101:1552–1562

    CAS  PubMed  CrossRef  Google Scholar 

  • Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201–204

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee M, Choi Y, Kim K et al (2014) Adenylation of maternally inherited microRNAs by Wispy. Mol Cell 56:696–707

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lei L, Jin S, Gonzalez G et al (2010) The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 315:63–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Lie BL, Leung E, Leung PC, Auersperg N (1996) Long-term growth and steroidogenic potential of human granulosa-lutein cells immortalized with SV40 large T antigen. Mol Cell Endocrinol 120:169–176

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Liu W, Sato A, Khadka D et al (2008) Mechanism of activation of the Formin protein Daam1. Proc Natl Acad Sci U S A 105:210–215

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu D, Li L, Fu H et al (2012) Biochemical and biophysical research communications inactivation of Dicer1 has a severe cumulative impact on the formation of mature germ cells in mouse testes. Biochem Biophys Res Commun 422:114–120

    CAS  PubMed  CrossRef  Google Scholar 

  • Lomelí H, Ramos-Mejia V, Nagy A (2000) Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26:8–10

    CrossRef  Google Scholar 

  • Ma J, Flemr M, Stein P et al (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ma H, Zhang J, Wu H (2014) Designing Ago2-specific siRNA/shRNA to avoid competition with endogenous miRNAs. Mol Ther Nucleic Acids 3:e176

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Maatouk DM, Loveland KL, McManus MT et al (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79:696–703

    CAS  PubMed  CrossRef  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    CAS  PubMed  CrossRef  Google Scholar 

  • Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488

    PubMed  CrossRef  Google Scholar 

  • Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139:287–301

    CAS  PubMed  CrossRef  Google Scholar 

  • Mishima T, Takizawa T, Luo SS et al (2008) MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 136:811–822

    CAS  PubMed  CrossRef  Google Scholar 

  • Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 284:95–103

    CAS  PubMed  CrossRef  Google Scholar 

  • Modzelewski AJ, Holmes RJ, Hilz S et al (2012) AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germ line. Dev Cell 23:251–264

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Modzelewski AJ, Hilz S, Crate EA et al (2015) Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males. J Cell Sci 128:2314–2327

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Murchison EP, Stein P, Xuan Z et al (2007) Critical roles for Dicer in the female germline. Genes Dev 21:682–693

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nagaraja AK, Andreu-Vieyra C, Franco HL et al (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22:2336–2352

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nakamura M, Minegishi T, Hasegawa Y et al (1993) Effect of an activin A on follicle-stimulating hormone (FSH) receptor messenger ribonucleic acid levels and FSH receptor expressions in cultured rat granulosa cells. Endocrinology 133:538–544

    CAS  PubMed  Google Scholar 

  • Nguyen TA, Jo MH, Choi Y-G et al (2015) Functional anatomy of the human microprocessor. Cell 161:1374–1387

    CAS  PubMed  CrossRef  Google Scholar 

  • Ninio-Many L, Grossman H, Levi M et al (2014) MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience 1:250–261

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7:919–931

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Niu Z, Goodyear SM, Rao S et al (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 108:12740–12745

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A 94:14602–14607

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Oktem O, Urman B (2010) Understanding follicle growth in vivo. Hum Reprod 25:2944–2954

    PubMed  CrossRef  Google Scholar 

  • Otsuka M, Zheng M, Hayashi M et al (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118:1944–1954

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pangas SA, Jorgez CJ, Tran M et al (2007) Intraovarian activins are required for female fertility. Mol Endocrinol 21:2458–2471

    CAS  PubMed  CrossRef  Google Scholar 

  • Panneerdoss S, Chang Y, Buddavarapu KC et al (2012) Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One 7:e41146

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Papaioannou MD, Pitetti J, Ro S et al (2009) Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 326:250–259

    CAS  PubMed  CrossRef  Google Scholar 

  • Papaioannou MD, Lagarrigue M, Vejnar CE et al (2011) Loss of dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 10:1–14

    CrossRef  CAS  Google Scholar 

  • Pepling ME (2012) Follicular assembly: mechanisms of action. Reproduction 143:139–149

    CAS  PubMed  CrossRef  Google Scholar 

  • Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234:339–351

    CAS  PubMed  CrossRef  Google Scholar 

  • Quick-Cleveland J, Jacob JP, Weitz SH et al (2014) The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep 7:1994–2005

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rakoczy J, Fernandez-Valverde SL, Glazov EA et al (2013) MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod 88:143

    PubMed  CrossRef  Google Scholar 

  • Real FM, Sekido R, Lupiáñez DG et al (2013) A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells. Biol Reprod 89:78

    PubMed  CrossRef  CAS  Google Scholar 

  • Ro S, Park C, Sanders KM et al (2007) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311:592–602

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Romero Y, Meikar O, Papaioannou MD et al (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 6:e25241

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Salisbury J, Hutchison KW, Wigglesworth K et al (2009) Probe-level analysis of expression microarrays characterizes isoform-specific degradation during mouse oocyte maturation. PLoS One 4:1–11

    CrossRef  CAS  Google Scholar 

  • Salustri A, Garlanda C, Hirsch E et al (2004) PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 131:1577–1586

    CAS  PubMed  CrossRef  Google Scholar 

  • Sánchez F, Adriaenssens T, Romero S, Smitz J (2010) Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice. Biol Reprod 83:514–524

    PubMed  CrossRef  CAS  Google Scholar 

  • Schmidt D, Ovitt CE, Anlag K et al (2004) The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933–942

    CAS  PubMed  CrossRef  Google Scholar 

  • Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of IoxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23:5080–5081

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sen A, Prizant H, Light A et al (2014) Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A 111:3008–3013

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Skinner MK (2005) Regulation of primordial follicle assembly and development. Hum Reprod Update 11:461–471

    PubMed  CrossRef  Google Scholar 

  • Smitz J, Cortvrindt R, Hu Y, Vanderstichele H (1998) Effects of recombinant activin A on in vitro culture of mouse preantral follicles. Mol Reprod Dev 50:294–304

    CAS  PubMed  CrossRef  Google Scholar 

  • Snyder EM, Small C, Griswold MD (2010) Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse. Biol Reprod 83:783–790

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Solc P, Schultz RM, Motlik J (2010) Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod 16:654–664

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Song R, Ro S, Michaels JD et al (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41:488–493

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sree S, Radhakrishnan K, Indu S, Kumar PG (2014) Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis. Biol Reprod 91:69

    PubMed  CrossRef  CAS  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    CAS  PubMed  CrossRef  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149

    CAS  PubMed  CrossRef  Google Scholar 

  • Su YQ, Sugiura K, Woo Y et al (2007) Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol 302:104–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Su H, Trombly MI, Chen J, Wang X (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23:304–317

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Suh N, Baehner L, Moltzahn F et al (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Swetloff A, Conne B, Huarte J et al (2009) Dcp1-bodies in mouse oocytes. Mol Biol Cell 20:4951–4961

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tan T, Zhang Y, Ji W, Zheng P (2014) miRNA signature in mouse spermatogonial stem cells revealed by high-throughput sequencing. Biomed Res Int 2014:154251

    PubMed  PubMed Central  Google Scholar 

  • Tang F, Kaneda M, O’Carroll D et al (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tiwari M, Prasad S, Tripathi A et al (2015) Apoptosis in mammalian oocytes: a review. Apoptosis 20:1019–1025

    CAS  PubMed  CrossRef  Google Scholar 

  • Tong M-H, Mitchell D, Evanoff R, Griswold MD (2011) Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 85:189–197

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tong M-H, Mitchell DA, McGowan SD et al (2012) Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 86:72

    PubMed  CrossRef  CAS  Google Scholar 

  • Trombly DJ, Woodruff TK, Mayo KE (2009) Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med 27:14–23

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ungewitter EK, Yao HHC (2012) How to make a gonad: cellular mechanisms governing formation of the testes and ovaries. Sex Dev 7:7–20

    PubMed  CrossRef  Google Scholar 

  • Usongo M, Rizk A, Farookhi R (2012) β-Catenin/Tcf signaling in murine oocytes identifies nonovulatory follicles. Reproduction 144:669–676

    CAS  PubMed  CrossRef  Google Scholar 

  • Velthut-Meikas A, Simm J, Tuuri T et al (2013) Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Mol Endocrinol 27:1128–1141

    CAS  PubMed  CrossRef  Google Scholar 

  • Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Wainwright EN, Jorgensen JS, Kim Y et al (2013) SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 89:34

    PubMed  CrossRef  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2008) Importance of translation and nonnucleolytic ago proteins for on-target RNA interference. Curr Biol 18:1327–1332

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu J, Bao J, Wang L et al (2011) MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 11:64

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu Q, Song R, Ortogero N et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Xu B, Hua J, Zhang Y et al (2011) Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PLoS One 6:e16046

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yan N, Lu Y, Sun H et al (2007) A microarray for microRNA profiling in mouse testis tissues. Reproduction 134:73–79

    CAS  PubMed  CrossRef  Google Scholar 

  • Yan G, Zhang L, Fang T et al (2012) MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett 586:3263–3270

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang J-S, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang Q-E, Racicot KE, Kaucher AV et al (2013a) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140:280–290

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang S, Wang S, Luo A et al (2013b) Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod 89:126

    CAS  PubMed  CrossRef  Google Scholar 

  • Yao N, Lu C-L, Zhao J-J et al (2009) A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci 14:3239–3245

    CAS  CrossRef  Google Scholar 

  • Yao G, Yin M, Lian J et al (2010a) MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 24:540–551

    CAS  PubMed  CrossRef  Google Scholar 

  • Yao N, Yang B-Q, Liu Y et al (2010b) Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 38:158–166

    CAS  PubMed  CrossRef  Google Scholar 

  • Yao G, Liang M, Liang N et al (2014) MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Mol Cell Endocrinol 382:244–253

    CAS  PubMed  CrossRef  Google Scholar 

  • Yin M, Lü M, Yao G et al (2012) Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol 26:1129–1143

    CAS  PubMed  CrossRef  Google Scholar 

  • Yin M, Wang X, Yao G et al (2014) Transactivation of microRNA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 289:18239–18257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yin F, Zhang JN, Wang SW et al (2015) MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS One 10:e0116759

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73:427–433

    CAS  PubMed  CrossRef  Google Scholar 

  • Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283:40–57

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang J, Ji X, Zhou D et al (2013a) miR-143 is critical for the formation of primordial follicles in mice. Front Biosci 1:588–597

    Google Scholar 

  • Zhang Q, Sun H, Jiang Y et al (2013b) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS One 8:e59667

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang H, Jiang X, Zhang Y et al (2014a) MicroRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction 148:43–54

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang X, Simerly C, Hartnett C et al (2014b) Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells. Stem Cell Res 13:379–389

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zimmermann C, Romero Y, Warnefors M et al (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS One 9:e107023

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

Download references

Grant Support

This work was supported by a grant from the Israel Science Foundation (ISF 470/14 to R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Shalgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grossman, H., Shalgi, R. (2016). A Role of MicroRNAs in Cell Differentiation During Gonad Development. In: Piprek, R. (eds) Molecular Mechanisms of Cell Differentiation in Gonad Development. Results and Problems in Cell Differentiation, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-31973-5_12

Download citation