Skip to main content

Common Structural Genomic Variants in Linked with SCZ Regions

  • Chapter
  • First Online:
Genomic Architecture of Schizophrenia Across Diverse Genetic Isolates

Abstract

After specific chromosomal regions were identified by linkage analyses and certain genes were identified as possible candidates, we used exploratory examination of copy number variants (CNVs) and runs of homozygosity (ROHs) based on microarray data to detect structural genomic variants within SCZ-linked regions. For mutation screening within SCZ-linked regions, the main priority in our study was loci with reliable signals in different isolates (with genomic homogeneity) and loci with LODs close to suggestive and significant levels as more robust in four ethnically and demographically subdivided isolates. Such structural genomic variants found in linked regions with candidate genes may have a higher likelihood of contributing to the expressed pathology. CNVs were identified using SVS (GoldenHelix) software if the size of deleted or duplicated region was 100 kb and contained at least 20 SNPs. Given the nonuniform patterns of ROHs across the genome, we were able to uncover regions with different lengths between groups. Differences in the average CN number of whole genomes autosomes varied from 1.3 to 3.1, with the average individual CN segment sizes ranging from 176 to 743.8 kb. Within certain chromosomes, the CN segmental lengths varied; the minimal length we obtained was 101 kb (one affected at 5q12) and a maximum of 4040 kb (at 8p23.2 of one affected). Other max sizes varied from 1015 to 1517 among a limited number of affected subjects’ regions we found in chromosomes 4, 14, 15, and 17. Among CN variants in SCZ cases, microduplications were more frequent than microdeletions by about 1.7 times: from total 205 CN we obtained in autosomes, 129 (63 %) are gains and 76 (37 %) are losses. Studying the isolate pedigrees enables the differentiation between CNV inheritance, as well as sporadic and de novo mutations, because all patients with clinically homogeneous phenotypes usually descended from a common ancestor. The most significant difference in ROH segment size is between SCZ and healthy groups, obtained for chromosomes 2, 6, 12, 17, 18, 19, and 22 where we found regions that were reliably linked with SCZ. Differences between the ROH length sizes for these groups were statistically significant with χ 2 = 176.7, d = 21, p = 0.000: length sizes are two times greater among affected, compared to healthy pedigree members. In addition, affected SCZ cases demonstrated larger stretches of CN segments, in comparison with healthy subjects. We found the “hot spots” (a high frequency) in CNV in linked regions of chromosomes 2, 6, 10, 17, 8, 9, and 19 in the genomes of SCZ patients, suggesting that CNVs play an important role in SCZ pathogenesis. We analyzed the inbreeding effect on CNV polymorphisms. Results obtained show that patients with homozygous mutations and of lower inbreeding accumulation have statistically larger CNV segment sizes and fewer markers in the segments, in comparison to similar patients with homozygous mutations who have relatively high levels of inbreeding accumulation. The results obtained suggest that homozygous copy number variations, the origin of which is influenced by inbreeding, are significantly more likely to be intergenic, not affecting the function of protein-coding genes involved in the pathogenesis of SCZ. It is unclear whether this is typical for patients with schizophrenia or if characteristic of evolutionary formed genomic mechanisms of adaptive genetic structure related to the specific effects of inbreeding in the studied isolates. The finding requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bulayeva, K., Jorde, L., Watkins, S., Bulayev, O., & Harpending, H. (2003). Genetics and history of caucasus populations. Human Biology, 75(6), 837–853.

    Article  PubMed  Google Scholar 

  • Bulayeva, K. B., Lencz, T., et al. (2011). Genome-wide linkage scan of major depressive disorder in two Dagestan genetic isolates. Central European Journal of Medicine, 6(5), 616–624.

    Google Scholar 

  • Bulayeva, K. B., Lencz, T., Takumi, T., Glatt, S. J., Gurgenova, F. R., Guseynova, U., et al. (2012). Mapping genes of early onset major depressive disorder in Dagestan genetic isolates. Turkish Journal of Psychiatry, 23(3), 161–170.

    PubMed  Google Scholar 

  • Bulayeva, K., Lesch, K.-P., Bulayev, O., Walsh, C., Glatt, S., Gurgenova, F., et al. (2015). Genomic structural variation in linked with intellectual disability regions in a Dagestan Genetic isolate. Journal of Neural Transmission, 122(9), 1289–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caciagli, L., Bulayeva, K., Bulayev, O., Bertoncini, S., Taglioli, L., Pagani, L., et al. (2009). The key role of patrilineal inheritance in shaping the genetic variation of Dagestan highlanders. Journal of Human Genetics, 54, 689–694.

    Article  PubMed  Google Scholar 

  • Cho, S. C., Yim, S. H., Yoo, H. K., Kim, M. Y., Jung, G. Y., Shin, G. W., Kim, B. N., Hwang, J. W., Kang, J. J., Kim, T. M., & Chung, Y. J. (2009). Copy number variations associated with idiopathic autism identified by whole-genome microarray-based comparative genomic hybridization. Psychiatric Genetics, 19(4), 177–185.

    Article  PubMed  Google Scholar 

  • Eberhard, G., Franzén, G., & Löw, B. (1975). Schizophrenia susceptibility and HL-A antigen. Neuropsychobiology, 1(4), 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Erkan, et al. (1996). HLA antigens in schizophrenia and mood disorders. Biological Psychiatry. Kalikala, Erzurum: Ataturk University.

    Google Scholar 

  • Glancy, M., Barnicoat, A., et al. (2009). Transmitted duplication of 8p23.1-8p23.2 associated with speech delay, autism and learning difficulties. European Journal of Human Genetics, 17(1), 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Goldgar, D. E., Lewis, C. M., & Gholami, K. (1993). Analysis of discrete phenotypes using a multipoint identity-by-descent method: Application to Alzheimer’s disease. Genetic Epidemiology, 10(6), 383–388.

    Article  CAS  PubMed  Google Scholar 

  • Grow, T. J., Tyrrell, D. A., Ferrier, I. N., Johnstone, E. C., Macmillan, J. F., Owens, D. G., & Parry, R. P. (1979). Virus-like particles in CSF in schizophrenia. Lancet, 2(8132), 35.

    Article  CAS  PubMed  Google Scholar 

  • Håvik, B., Le Hellard, S., Rietschel, M., Lybak, H., Djurovic, S., Mattheisen, M., Muhleisen, T. W., Degenhardt, F., Priebe, L., Maier, W., Breuer, R., Schulze, T. G., Agartz, I., Melle, I., Hansen, T., Bramham, C. R., Nöthen, M. M., Stevens, B., Werge, T., Andreassen, O. A., Cichon, S., & Steen, V. M. (2011). The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biological Psychiatry, 70(1), 35–42. Epub 2011 Mar 24.

    Article  PubMed  Google Scholar 

  • Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., et al. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520(7546), 224–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Schizophrenia Consortium. (2008). Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455(7210), 237–241.

    Article  Google Scholar 

  • Iványi, D., Zemek, P., & Iványi, P. (1976). HLA antigens in schizophrenia. Tissue Antigens, 8(3), 217–220.

    Article  PubMed  Google Scholar 

  • Ivanyi, D., Zemek, P., & Ivanyi, P. (1978). HLA antigens as possible markers of heterogeneity in schizophrenia. Journal of Immunogenetics, 5, 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Ivanyi, D., Zemek, P., & Ivanyi, P. (2007). HLA antigens as possible markers of heterogeneity in schizophrenia. International Journal of Immunogenetics, 5, 3.

    Google Scholar 

  • Jones, P., & Cannon, M. (1998). The new epidemiology of schizophrenia. The Psychiatric Clinics of North America, 21(1), 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Kirov, G., Gumus, D., Chen, W., Norton, N., Georgieva, L., Sari, M., O’Donovan, M. C., Erdogan, F., Owen, M. J., Ropers, H. H., & Ullmann, R. (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics, 17(3), 458–465.

    Article  CAS  PubMed  Google Scholar 

  • Kolle, G., Georgas, K., Holmes, G. P., Little, M. H., & Yamada, T. (2000). CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate. CNS Development and Organogenesis, 90(2), 181–193.

    CAS  Google Scholar 

  • Kruglyak, L., & Lander, E. S. (1995). High-resolution genetic mapping of complex traits. The American Journal of Human Genetics, 56(5), 12–23.

    Google Scholar 

  • Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. (1996). Parametric and nonparametric linkage analysis: A unified multipoint approach. American Journal of Human Genetics, 58(6), 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchani, E. E., Watkins, W. S., Bulayeva, K., Harpending, H. C., & Jorde, L. B. (2008). Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan. BMC Genetics, 9(47), 1–13.

    Google Scholar 

  • McGuffin, P., & Owen, M. (1991). The molecular genetics of schizophrenia: An overview and forward view. European Archives of Psychiatry and Clinical Neuroscience, 240(3), 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Mitkevich, S. P. (1981). HLA antigens and schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova, 81(7), 1016–1018. Russian.

    CAS  PubMed  Google Scholar 

  • Shaikh, T. H., Gai, X., Perin, J. C., et al. (2009). High-resolution mapping and analysis of copy number variations in the human genome. A data resource for clinical and research applications. Genome Research, 19(9), 1682–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P., Ingason, A., Steinberg, S., et al. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefansson, H., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460, 744–747 (6 August 2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, B., Dean, B., & Thomas, E. A. (2011). Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Translational Psychiatry, 1, 64.

    Article  CAS  Google Scholar 

  • Torrey, E. F. (1997). Psychiatric survivors and nonsurvivors. Psychiatric Services, 48(2), 143.

    Article  CAS  PubMed  Google Scholar 

  • Tsuang, M. T. (1998). Genetic epidemiology of schizophrenia: Review and reassessment. The Kaohsiung Journal of Medical Sciences, 14(7), 405–412. Review.

    CAS  PubMed  Google Scholar 

  • Tsuang, M. T., & Faraone, S. V. (1995). The case for heterogeneity in the etiology of schizophrenia. Schizophr Research, 17(2), 161–175. Review.

    Article  CAS  Google Scholar 

  • Walsh, T., McClellan, J., McCarthy, S., Addington, A., Pierce, S., Cooper, G., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875), 539–43. doi:10.1126/science.1155174. Epub, 27.

    Article  CAS  PubMed  Google Scholar 

  • Walss-Bass, C., Montero, A. P., Armas, R., Dassori, A., Contreras, S. A., Liu, W., Medina, R., Levinson, D., Pereira, M., Atmella, I., NeSmith, L., Leach, R., Almasy, L., Raventos, H., & Escamilla, M. A. (2006). Linkage disequilibrium analyses in the Costa Rican population suggests discrete gene loci for schizophrenia at 8p23.1 and 8q13.3. Psychiatric Genetics, 16(4), 159–168.

    Article  PubMed  Google Scholar 

  • Weeks, D. E., & Lange, K. (1987). Preliminary ranking procedures for multilocus ordering. Genomics, 1(3), 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Wright, P., Donaldson, P. T., Underhill, J. A., Doherty, D. G., Choudhuri, K., & Murray, R. M. (1996). Genetic association of the HLA DRB1 gene locus on chromosome 6p21.3 with schizophrenia. The American Journal of Psychiatry, 153, 1530–1533.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bulayeva, K., Bulayev, O., Glatt, S. (2016). Common Structural Genomic Variants in Linked with SCZ Regions. In: Genomic Architecture of Schizophrenia Across Diverse Genetic Isolates. Springer, Cham. https://doi.org/10.1007/978-3-319-31964-3_5

Download citation

Publish with us

Policies and ethics