Skip to main content

Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9649))

Abstract

Ribosome profiling quantitatively captures ribosome locations during translation. The resulting profiles of ribosome locations are widely used to study translational speed. However, an accurate estimation of the ribosome location depends on identifying the A-site from ribosome profiling reads, a problem that was previously unsolved. Here, we propose a novel method to estimate the ribosome A-site positions from high-coverage ribosome profiling reads. Our model allows more reads to be used, accurately explains the 3-nt periodicity of ribosome profiling reads from various lengths, and recovers consistent ribosome positions across different lengths. Our recovered ribosome positions are correctly highly skewed towards a single frame within a codon. They retain sub-codon resolution and enable detection of off-frame translational events, such as frameshifts. Our method improves the correlation with other estimates of codon decoding time. Further, the refined profiles show that yeast wobble-pairing codons are translated slower than their synonymous Watson-Crick-pairing codons. These results provide evidence that protein synthetic rate can be tuned by codon usage bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, F.W., Muzzey, D., Weissman, J.S., Kruglyak, L.: Genetic influences on translation in yeast. PLoS Genet. 10(10), e1004692 (2014)

    Article  Google Scholar 

  2. Artieri, C.G., Fraser, H.B.: Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Res. 24(12), 2011–2021 (2014)

    Article  Google Scholar 

  3. Artieri, C.G., Fraser, H.B.: Evolution at two levels of gene expression in yeast. Genome Res. 24(3), 411–421 (2014)

    Article  Google Scholar 

  4. Brar, G.A., Yassour, M., Friedman, N., Regev, A., Ingolia, N.T., Weissman, J.S.: High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335(6068), 552–557 (2012)

    Article  Google Scholar 

  5. Crick, F.H.: Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19(2), 548–555 (1966)

    Article  Google Scholar 

  6. Dana, A., Tuller, T.: Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLoS Comput. Biol. 8(11), e1002755 (2012)

    Article  Google Scholar 

  7. Dana, A., Tuller, T.: Properties and determinants of codon decoding time distributions. BMC Genomics 15(6), S13 (2014)

    Article  Google Scholar 

  8. Dana, A., Tuller, T.: The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42(14), 9171–9181 (2014)

    Article  Google Scholar 

  9. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013)

    Article  Google Scholar 

  10. Dunn, J.G., Foo, C.K., Belletier, N.G., Gavis, E.R., Weissman, J.S.: Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. Elife 2, e01179 (2013)

    Article  Google Scholar 

  11. Engel, S.R., Cherry, J.M.: The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database. Database (Oxford) 2013, bat012 (2013)

    Article  Google Scholar 

  12. Fong, D.C., Saunders, M.: LSMR: an iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput. 33(5), 2950–2971 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gao, X., Wan, J., Liu, B., Ma, M., Shen, B., Qian, S.B.: Quantitative profiling of initiating ribosomes in vivo. Nat. Methods 12(2), 147–153 (2015)

    Article  Google Scholar 

  14. Gardin, J., Yeasmin, R., Yurovsky, A., Cai, Y., Skiena, S., Futcher, B.: Measurement of average decoding rates of the 61 sense codons in vivo. Elife 3, e03735 (2014)

    Article  Google Scholar 

  15. Gerashchenko, M.V., Gladyshev, V.N.: Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42(17), e134 (2014)

    Article  Google Scholar 

  16. Gerashchenko, M.V., Lobanov, A.V., Gladyshev, V.N.: Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 109(43), 17394–17399 (2012)

    Article  Google Scholar 

  17. Guo, H., Ingolia, N.T., Weissman, J.S., Bartel, D.P.: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308), 835–840 (2010)

    Article  Google Scholar 

  18. Guydosh, N.R., Green, R.: Dom34 rescues ribosomes in 3’ untranslated regions. Cell 156(5), 950–962 (2014)

    Article  Google Scholar 

  19. Ingolia, N.T.: Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15(3), 205–213 (2014)

    Article  Google Scholar 

  20. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., Weissman, J.S.: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924), 218–223 (2009)

    Article  Google Scholar 

  21. Ingolia, N.T., Lareau, L.F., Weissman, J.S.: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4), 789–802 (2011)

    Article  Google Scholar 

  22. Lareau, L.F., Hite, D.H., Hogan, G.J., Brown, P.O.: Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife 3, e01257 (2014)

    Article  Google Scholar 

  23. Lee, S., Liu, B., Lee, S., Huang, S.X., Shen, B., Qian, S.B.: Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl. Acad. Sci. U.S.A. 109(37), E2424–2432 (2012)

    Article  Google Scholar 

  24. Li, G.W., Burkhardt, D., Gross, C., Weissman, J.S.: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157(3), 624–635 (2014)

    Article  Google Scholar 

  25. Martens, A.T., Taylor, J., Hilser, V.J.: Ribosome A and P sites revealed by length analysis of ribosome profiling data. Nucleic Acids Res. 43(7), 3680–3687 (2015)

    Article  Google Scholar 

  26. McManus, C.J., May, G.E., Spealman, P., Shteyman, A.: Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res. 24(3), 422–430 (2014)

    Article  Google Scholar 

  27. Michel, A.M., Choudhury, K.R., Firth, A.E., Ingolia, N.T., Atkins, J.F., Baranov, P.V.: Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 22(11), 2219–2229 (2012)

    Article  Google Scholar 

  28. O’Connor, P., Andreev, D., Baranov, P.: Surveying the relative impact of mRNA features on local ribosome profiling read density in 28 datasets. bioRxiv, 018762 (2015)

    Google Scholar 

  29. Patro, R., Duggal, G., Kingsford, C.: Salmon: accurate, versatile and ultrafast quantification from RNA-seq data using lightweight-alignment. bioRxiv, 021592 (2015)

    Google Scholar 

  30. Pop, C., Rouskin, S., Ingolia, N.T., Han, L., Phizicky, E.M., Weissman, J.S., Koller, D.: Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 10, 770 (2014)

    Article  Google Scholar 

  31. dos Reis, M., Savva, R., Wernisch, L.: Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32(17), 5036–5044 (2004)

    Article  Google Scholar 

  32. Sabi, R., Tuller, T.: A comparative genomics study on the effect of individual amino acids on ribosome stalling. BMC Genomics 16(10), S5 (2015)

    Article  Google Scholar 

  33. Shah, P., Ding, Y., Niemczyk, M., Kudla, G., Plotkin, J.B.: Rate-limiting steps in yeast protein translation. Cell 153(7), 1589–1601 (2013)

    Article  Google Scholar 

  34. Stadler, M., Artiles, K., Pak, J., Fire, A.: Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets. Genome Res. 22(12), 2418–2426 (2012)

    Article  Google Scholar 

  35. Stadler, M., Fire, A.: Wobble base-pairing slows in vivo translation elongation in metazoans. RNA 17(12), 2063–2073 (2011)

    Article  Google Scholar 

  36. Tarrant, D., von der Haar, T.: Synonymous codons, ribosome speed, and eukaryotic gene expression regulation. Cell. Mol. Life Sci. 71(21), 4195–4206 (2014)

    Article  Google Scholar 

  37. Vaidyanathan, P.P., Zinshteyn, B., Thompson, M.K., Gilbert, W.V.: Protein kinase A regulates gene-specific translational adaptation in differentiating yeast. RNA 20(6), 912–922 (2014)

    Article  Google Scholar 

  38. Woolstenhulme, C.J., Guydosh, N.R., Green, R., Buskirk, A.R.: High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep. 11(1), 13–21 (2015)

    Article  Google Scholar 

  39. Zupanic, A., Meplan, C., Grellscheid, S.N., Mathers, J.C., Kirkwood, T.B., Hesketh, J.E., Shanley, D.P.: Detecting translational regulation by change point analysis of ribosome profiling data sets. RNA 20(10), 1507–1518 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Geet Duggal, Darya Filipova, Heewook Lee, Brad Solomon, Jing Xiang, Hongyi Xing, David Pellow, Pieter Spealman and Chengxi Ye for useful discussions. This research is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative through Grant GBMF4554 to Carl Kingsford, by the US National Science Foundation (CCF-1256087, CCF-1319998), and by the US National Institutes of Health (R21HG006913, R01HG007104). C.K. received support as an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Kingsford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, H., McManus, J., Kingsford, C. (2016). Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. In: Singh, M. (eds) Research in Computational Molecular Biology. RECOMB 2016. Lecture Notes in Computer Science(), vol 9649. Springer, Cham. https://doi.org/10.1007/978-3-319-31957-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31957-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31956-8

  • Online ISBN: 978-3-319-31957-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics