Advertisement

Fixed Point Theory for (ws)-Compact Operators

  • Afif Ben Amar
  • Donal O’Regan
Chapter

Abstract

In this chapter we present fixed point theory and study eigenvalues and eigenvectors of nonlinear (ws)-compact operators.

Bibliography

  1. 2.
    D.E. Alspach, A fixed point free nonexpansive mapping. Proc. Am. Math. Soc. 82, 423–424 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 96.
    A. Granas, On a class of nonlinear mappings in Banach spaces. Bull. Acad. Pol. Sci. 5, 867–870 (1957)MathSciNetzbMATHGoogle Scholar
  3. 100.
    M.S. Gowda, G. Isac, Operators of class (S)+ 1, Altman’s condition and the complementarity problem. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 40, 1–16 (1993)Google Scholar
  4. 109.
    C.J. Himmelberg, J.R. Porter, F.S. Van Vleck, Fixed point theorems for condensing multifunctions. Proc. Am. Math. Soc. 23, 635–641 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 119.
    In.-S. Kim, Fixed Points, Eigenvalues and Surjectivity. J. Korean Math. Soc. 45(1), 151–161 (2008)Google Scholar
  6. 169.
    W.V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert spaces. J. Math. Anal. Appl. 14, 276–284 (1966)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Afif Ben Amar
    • 1
  • Donal O’Regan
    • 2
  1. 1.Department of MathematicsUniversity of Sfax, Faculty of SciencesSfaxTunisia
  2. 2.School of MathematicsNational University of Ireland, GalwayGalwayIreland

Personalised recommendations