Advertisement

Applications

  • Mikko Laine
  • Aleksi Vuorinen
Chapter
  • 2.1k Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 925)

Abstract

A number of physical applications of relativistic thermal field theory are considered. First the basic formalism for addressing the existence of a scalar field driven phase transition is developed (Sect. 9.1). Then the concept of instantons is introduced with the example of a bubble nucleation rate related to a first order phase transition (Sect. 9.2). This is followed by a general discussion concerning the formalism for particle production rate computations, relevant both for heavy ion collision experiments and cosmology (Sect. 9.3). How a particle production rate can be embedded in an expanding cosmological background is explained in detail (Sect. 9.4). Turning to so-called transport coefficients, we first consider the effective mass and friction coefficient that a scalar field evolving within a thermal environment feels (Sect. 9.5). Then transport coefficients are discussed more generally, culminating in the definition of shear and bulk viscosities, diffusion coefficients, and the electric conductivity of QCD matter (Sect. 9.6). Transport coefficients are closely related to the rate at which a slightly disturbed system equilibrates, and the corresponding formalism is introduced, stressing the idea of employing operator equations of motion in order to simplify the correlation function to be computed (Sect. 9.7). Finally a somewhat different but physically important topic, that of the behaviour of resonances made of a heavy quark and an antiquark within a hot QCD medium, is outlined, with emphasis on the roles that “virtual” and “real” corrections play at finite temperature (Sect. 9.8).

Keywords

Effective potential Condensate First order phase transition Semiclassical approximation Saddle point Instanton Fluctuation determinant Tunnelling Sphaleron Classical limit Critical bubble Latent heat Surface tension Particle production On-shell field operator Landau-Pomeranchuk-Migdal effect Decay rate Einstein equations Yield parameter Boltzmann equation Friction coefficient Damping rate Thermal mass Dilaton Axion Chern-Simons diffusion Equilibration Kubo formula Transport peak Flavour diffusion Conductivity Viscosity Brownian motion Langevin equation Quarkonium Debye screening Decoherence Thermal width Real and virtual processes at finite temperature 

References

  1. 1.
    R. Fukuda, E. Kyriakopoulos, Derivation of the effective potential. Nucl. Phys. B 85, 354 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    R. Jackiw, Functional evaluation of the effective potential. Phys. Rev. D 9, 1686 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    D.A. Kirzhnits, Weinberg model in the hot universe. JETP Lett. 15, 529 (1972) [Pisma Zh. Eksp. Teor. Fiz. 15, 745 (1972)]Google Scholar
  4. 4.
    D.A. Kirzhnits, A.D. Linde, Macroscopic consequences of the Weinberg model. Phys. Lett. B 42, 471 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    S. Weinberg, Gauge and global symmetries at high temperature. Phys. Rev. D 9, 3357 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lüscher, P. Weisz, Scaling laws and triviality bounds in the lattice \(\varphi ^{4}\) theory. 1. One component model in the symmetric phase. Nucl. Phys. B 290, 25 (1987)Google Scholar
  8. 8.
    M. Lüscher, P. Weisz, Scaling laws and triviality bounds in the lattice \(\varphi ^{4}\) theory. 2. One component model in the phase with spontaneous symmetry breaking. Nucl. Phys. B 295, 65 (1988)Google Scholar
  9. 9.
    J. Rudnick, First-order transition induced by cubic anisotropy. Phys. Rev. B 18, 1406 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    B.I. Halperin, T.C. Lubensky, S.-K. Ma, First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32, 292 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    D.A. Kirzhnits, A.D. Linde, Symmetry behavior in gauge theories. Ann. Phys. 101, 195 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    P.B. Arnold, O. Espinosa, The effective potential and first order phase transitions: beyond leading order. Phys. Rev. D 47, 3546 (1993); ibid. 50, 6662 (E) (1994) [hep-ph/9212235]Google Scholar
  13. 13.
    M. Laine, K. Rummukainen, What’s new with the electroweak phase transition? Nucl. Phys. Proc. Suppl. 73, 180 (1999) [hep-lat/9809045]Google Scholar
  14. 14.
    D.E. Morrissey, M.J. Ramsey-Musolf, Electroweak baryogenesis. New J. Phys. 14, 125003 (2012) [1206.2942]Google Scholar
  15. 15.
    J.S. Langer, Theory of the condensation point. Ann. Phys. 41, 108 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Langer, Statistical theory of the decay of metastable states. Ann. Phys. 54, 258 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev. D 15, 2929 (1977); ibid. 16, 1248 (E) (1977)Google Scholar
  18. 18.
    A.D. Linde, Fate of the false vacuum at finite temperature: theory and applications. Phys. Lett. B 100, 37 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    C.G. Callan, S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections. Phys. Rev. D 16, 1762 (1977)Google Scholar
  20. 20.
    I. Affleck, Quantum statistical metastability. Phys. Rev. Lett. 46, 388 (1981)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Arnold, D. Son, L.G. Yaffe, The hot baryon violation rate is \(\mathcal{O}(\alpha _{w}^{5}T^{4})\). Phys. Rev. D 55, 6264 (1997) [hep-ph/9609481]Google Scholar
  22. 22.
    G.D. Moore, K. Rummukainen, Electroweak bubble nucleation, nonperturbatively. Phys. Rev. D 63, 045002 (2001) [hep-ph/0009132]Google Scholar
  23. 23.
    V.A. Rubakov, M.E. Shaposhnikov, Electroweak Baryon number non-conservation in the early universe and in high-energy collisions. Usp. Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996)] [hep-ph/9603208]Google Scholar
  24. 24.
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett. B 59, 85 (1975)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    F.R. Klinkhamer, N.S. Manton, A saddle point solution in the Weinberg-Salam theory. Phys. Rev. D 30, 2212 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    P. Arnold, L.D. McLerran, Sphalerons, small fluctuations and Baryon number violation in electroweak theory. Phys. Rev. D 36, 581 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    J. Ambjørn, T. Askgaard, H. Porter, M.E. Shaposhnikov, Sphaleron Transitions and Baryon asymmetry: a numerical real time analysis. Nucl. Phys. B 353, 346 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    M. D’Onofrio, K. Rummukainen, A. Tranberg, Sphaleron rate in the Minimal Standard Model. Phys. Rev. Lett. 113, 141602 (2014) [1404.3565]Google Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, §162 (Butterworth-Heinemann, Oxford) (1980)Google Scholar
  30. 30.
    A.D. Linde, Decay of the false vacuum at finite temperature. Nucl. Phys. B 216, 421 (1983); ibid. 223, 544 (E) (1983)Google Scholar
  31. 31.
    L.D. McLerran, T. Toimela, Photon and dilepton emission from the Quark-Gluon plasma: some general considerations. Phys. Rev. D 31, 545 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    H.A. Weldon, Reformulation of finite temperature dilepton production. Phys. Rev. D 42, 2384 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    T. Asaka, M. Laine, M. Shaposhnikov, On the hadronic contribution to sterile neutrino production. J. High Energy Phys. 06, 053 (2006) [hep-ph/0605209]Google Scholar
  34. 34.
    J. Ghiglieri, M. Laine, Improved determination of sterile neutrino dark matter spectrum. J. High Energy Phys. 11, 171 (2015) [1506.06752]Google Scholar
  35. 35.
    D. Bödeker, M. Sangel, M. Wörmann, Equilibration, particle production, and self-energy. Phys. Rev. D 93, 045028 (2016) [1510.06742]Google Scholar
  36. 36.
    A. Anisimov, D. Besak, D. Bödeker, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering. J. Cosmol, Astropart. Phys. 03, 042 (2011) [1012.3784]Google Scholar
  37. 37.
    D. Besak, D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results. J. Cosmol. Astropart. Phys. 03, 029 (2012) [1202.1288]Google Scholar
  38. 38.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. J. High Energy Phys. 11, 057 (2001) [hep-ph/0109064]Google Scholar
  39. 39.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results. J. High Energy Phys. 12 009 (2001) [hep-ph/0111107]Google Scholar
  40. 40.
    M. Cohen, R.P. Feynman, Theory of inelastic scattering of cold neutrons from liquid helium. Phys. Rev. 107, 13 (1957)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    D.G. Henshaw, A.D.B. Woods, Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 1266 (1961)ADSCrossRefGoogle Scholar
  42. 42.
    J. Bernstein, Kinetic Theory in the Expanding Universe (Cambridge University Press, Cambridge, 1988)CrossRefzbMATHGoogle Scholar
  43. 43.
    E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, Reading, 1990)zbMATHGoogle Scholar
  44. 44.
    T. Asaka, M. Laine, M. Shaposhnikov, Lightest sterile neutrino abundance within the νMSM. J. High Energy Phys. 01, 091 (2007) [hep-ph/0612182]Google Scholar
  45. 45.
    M. Shaposhnikov, I. Tkachev, The νMSM, inflation, and dark matter. Phys. Lett. B 639, 414 (2006) [hep-ph/0604236]Google Scholar
  46. 46.
    K. Petraki, A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. Phys. Rev. D 77, 065014 (2008) [0711.4646]Google Scholar
  47. 47.
    T. Matsui, B. Svetitsky, L.D. McLerran, Strangeness production in ultrarelativistic heavy-ion collisions. 1. Chemical kinetics in the quark-gluon plasma. Phys. Rev. D 34, 783 (1986); ibid. 37, 844 (E) (1988)Google Scholar
  48. 48.
    D. Bödeker, Moduli decay in the hot early Universe. J. Cosmol. Astropart. Phys. 06, 027 (2006) [hep-ph/0605030]Google Scholar
  49. 49.
    M. Laine, On bulk viscosity and moduli decay. Prog. Theor. Phys. Suppl. 186, 404 (2010) [1007.2590]Google Scholar
  50. 50.
    L.D. McLerran, E. Mottola, M.E. Shaposhnikov, Sphalerons and axion dynamics in high temperature QCD. Phys. Rev. D 43, 2027 (1991)ADSCrossRefGoogle Scholar
  51. 51.
    M. Lüscher, Topological effects in QCD and the problem of short distance singularities. Phys. Lett. B 593, 296 (2004) [hep-th/0404034]ADSCrossRefGoogle Scholar
  52. 52.
    E. Berkowitz, Lattice QCD and axion cosmology. (2015) arXiv:1509.02976Google Scholar
  53. 53.
    P.B. Arnold, C. Dogan, G.D. Moore, The bulk viscosity of high-temperature QCD. Phys. Rev. D 74, 085021 (2006) [hep-ph/0608012]Google Scholar
  54. 54.
    D.T. Son, A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications. J. High Energy Phys. 09, 042 (2002) [hep-th/0205051]ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    D.Y. Grigoriev, V.A. Rubakov, Soliton pair creation at finite temperatures. Numerical study in (1+1)-dimensions. Nucl. Phys. B 299, 67 (1988)Google Scholar
  56. 56.
    D. Bödeker, Classical real time correlation functions and quantum corrections at finite temperature. Nucl. Phys. B 486, 500 (1997) [hep-th/9609170]ADSCrossRefGoogle Scholar
  57. 57.
    D. Bödeker, G.D. Moore, K. Rummukainen, Chern-Simons number diffusion and Hard Thermal Loops on the lattice. Phys. Rev. D 61, 056003 (2000) [hep-ph/9907545]Google Scholar
  58. 58.
    G.D. Moore, M. Tassler, The sphaleron rate in SU(N) gauge theory. J. High Energy Phys. 02, 105 (2011) [1011.1167]Google Scholar
  59. 59.
    H.B. Meyer, Transport properties of the Quark-Gluon plasma: a lattice QCD perspective. Eur. Phys. J. A 47, 86 (2011) [1104.3708]Google Scholar
  60. 60.
    G. Aarts, Transport and spectral functions in high-temperature QCD. PoS LAT2007 001 (2007) [0710.0739]Google Scholar
  61. 61.
    P. Kovtun, G.D. Moore, P. Romatschke, The stickiness of sound: an absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics. Phys. Rev. D 84, 025006 (2011) [1104.1586]Google Scholar
  62. 62.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Transport coefficients in high temperature gauge theories: (I) leading-log results. J. High Energy Phys. 11, 001 (2000) [hep-ph/0010177]Google Scholar
  63. 63.
    L.G. Yaffe, Dynamics of hot gauge theories. Nucl. Phys. B (Proc. Suppl.) 106, 117 (2002) [hep-th/0111058]Google Scholar
  64. 64.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Transport coefficients in high temperature gauge theories. (II) Beyond leading log. J. High Energy Phys. 05, 051 (2003) [hep-ph/0302165]Google Scholar
  65. 65.
    G.D. Moore, D. Teaney, How much do heavy quarks thermalize in a heavy ion collision? Phys. Rev. C 71, 064904 (2005) [hep-ph/0412346]Google Scholar
  66. 66.
    D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in \(\mathcal{N} = 4\) Yang Mills theory. Phys. Rev. D 74, 045025 (2006) [hep-ph/0602044]Google Scholar
  67. 67.
    G.D. Moore, K.A. Sohrabi, Kubo formulae for second-order hydrodynamic coefficients. Phys. Rev. Lett. 106, 122302 (2011) [1007.5333]Google Scholar
  68. 68.
    R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)Google Scholar
  69. 69.
    S.Y. Khlebnikov, M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation. Nucl. Phys. B 308, 885 (1988)ADSCrossRefGoogle Scholar
  70. 70.
    J. Casalderrey-Solana, D. Teaney, Heavy quark diffusion in strongly coupled \(\mathcal{N} = 4\) Yang Mills. Phys. Rev. D 74, 085012 (2006) [hep-ph/0605199]Google Scholar
  71. 71.
    S. Caron-Huot, M. Laine, G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice. J. High Energy Phys. 04, 053 (2009) [0901.1195]Google Scholar
  72. 72.
    D. Bödeker, M. Laine, Heavy quark chemical equilibration rate as a transport coefficient. J. High Energy Phys. 07, 130 (2012) [1205.4987]Google Scholar
  73. 73.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2, §88–89 (Butterworth-Heinemann, Oxford) (1991)Google Scholar
  74. 74.
    T. Matsui, H. Satz, Jψ suppression by Quark-Gluon plasma formation. Phys. Lett. B 178, 416 (1986)ADSCrossRefGoogle Scholar
  75. 75.
    A. Czarnecki, K. Melnikov, Two-loop QCD corrections to the heavy quark pair production cross section in e + e annihilation near the threshold. Phys. Rev. Lett. 80, 2531 (1998) [hep-ph/9712222]Google Scholar
  76. 76.
    M. Beneke, A. Signer, V.A. Smirnov, Two-loop correction to the leptonic decay of quarkonium. Phys. Rev. Lett. 80, 2535 (1998) [hep-ph/9712302]Google Scholar
  77. 77.
    C.W. Bernard, Feynman rules for gauge theories at finite temperature. Phys. Rev. D 9, 3312 (1974)ADSCrossRefGoogle Scholar
  78. 78.
    J.B. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395 (1975)ADSCrossRefGoogle Scholar
  79. 79.
    M. Lüscher, Construction of a selfadjoint, strictly positive transfer matrix for Euclidean lattice gauge theories. Commun. Math. Phys. 54, 283 (1977)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    K.J. Juge, J. Kuti, C. Morningstar, Fine structure of the QCD string spectrum. Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]Google Scholar
  81. 81.
    A. Rothkopf, T. Hatsuda, S. Sasaki, Proper heavy-quark potential from a spectral decomposition of the thermal Wilson loop. PoS LAT2009, 162 (2009) [0910.2321]Google Scholar
  82. 82.
    J. Ghiglieri, Review of the EFT treatment of quarkonium at finite temperature. PoS ConfinementX 004 (2012) [1303.6438]Google Scholar
  83. 83.
    D. Blaschke, G. Burau, Y. Kalinovsky, T. Barnes, Mott effect and Jψ dissociation at the quark hadron phase transition. Eur. Phys. J. A 18, 547 (2003) [nucl-th/0211058]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mikko Laine
    • 1
  • Aleksi Vuorinen
    • 2
  1. 1.AEC, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations