Advertisement

Real-Time Observables

  • Mikko Laine
  • Aleksi Vuorinen
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 925)

Abstract

Various real-time correlation functions are defined (Wightman, retarded, advanced, time-ordered, spectral). Their analytic properties are discussed, and general relations between them are worked out for the case of a system in thermal equilibrium. Examples are given for free scalar and fermion fields. A physically relevant spectral function related to a composite operator is analyzed in detail. The so-called real-time formalism is introduced, and it is shown how it can be used to compute the same spectral function that was previously determined with the imaginary-time formalism. The need for resummations in order to systematically determine spectral functions in weakly coupled systems is stated. The concept of Hard Thermal Loops (HTLs), which implement a particular resummation, is introduced. HTL-resummed gauge field and fermion propagators are derived. The main plasma physics phenomena that the HTL resummation captures are pointed out. A warning is issued that although necessary HTL resummation is in general not sufficient for obtaining a systematic weak-coupling expansion.

Keywords

Wick rotation Time ordering Heisenberg operator Wightman function Retarded and advanced correlators Kubo-Martin-Schwinger relation Spectral representation Sum rule Analytic continuation Density matrix Schwinger-Keldysh formalism Hard Thermal Loops Landau damping Plasmon Plasmino Dispersion relation 

References

  1. 1.
    L.P. Kadanoff, G.A. Baym, Quantum Statistical Mechanics (Benjamin, Menlo Park, 1962)zbMATHGoogle Scholar
  2. 2.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  3. 3.
    S. Doniach, E.H. Sondheimer, Green’s Functions for Solid State Physicists (Benjamin, Reading, 1974)zbMATHGoogle Scholar
  4. 4.
    J.W. Negele, H. Orland, Quantum Many Particle Systems (Addison-Wesley, Redwood City, 1988)zbMATHGoogle Scholar
  5. 5.
    G. Cuniberti, E. De Micheli, G.A. Viano, Reconstructing the thermal Green functions at real times from those at imaginary times. Commun. Math. Phys. 216, 59 (2001) [cond-mat/0109175]Google Scholar
  6. 6.
    H.B. Meyer, Transport properties of the Quark-Gluon plasma: a lattice QCD perspective. Eur. Phys. J. A 47, 86 (2011) [1104.3708]Google Scholar
  7. 7.
    H.A. Weldon, Simple rules for discontinuities in finite temperature field theory. Phys. Rev. D 28, 2007 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    M. Laine, Thermal 2-loop master spectral function at finite momentum. J. High Energy Phys. 05, 083 (2013) [1304.0202]Google Scholar
  9. 9.
    R.D. Pisarski, Computing finite temperature loops with ease. Nucl. Phys. B 309, 476 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    R.R. Parwani, Resummation in a hot scalar field theory. Phys. Rev. D 45, 4695 (1992); ibid. 48, 5965 (E) (1993) [hep-ph/9204216]Google Scholar
  11. 11.
    H.A. Weldon, Effective fermion masses of \(\mathcal{O}(gT)\) in high-temperature gauge theories with exact chiral invariance. Phys. Rev. D 26, 2789 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    E. Braaten, R.D. Pisarski, T.-C. Yuan, Production of soft dileptons in the quark–gluon plasma. Phys. Rev. Lett. 64, 2242 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    G.D. Moore, J.-M. Robert, Dileptons, spectral weights, and conductivity in the quark-gluon plasma. (2006) arXiv:hep-ph/0607172Google Scholar
  14. 14.
    A. Anisimov, D. Besak, D. Bödeker, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering. J. Cosmol. Astropart. Phys. 03, 042 (2011) [1012.3784]Google Scholar
  15. 15.
    D. Besak, D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results. J. Cosmol. Astropart. Phys. 03, 029 (2012) [1202.1288]Google Scholar
  16. 16.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. J. High Energy Phys. 11, 057 (2001) [hep-ph/0109064]Google Scholar
  17. 17.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results. J. High Energy Phys. 12, 009 (2001) [hep-ph/0111107]Google Scholar
  18. 18.
    K. Chou, Z. Su, B. Hao, L. Yu, Equilibrium and nonequilibrium formalisms made unified. Phys. Rep. 118, 1 (1985)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    N.P. Landsman, C.G. van Weert, Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Caron-Huot, Hard thermal loops in the real-time formalism. J. High Energy Phys. 04, 004 (2009) [0710.5726]Google Scholar
  21. 21.
    S. Caron-Huot, G.D. Moore, Heavy quark diffusion in perturbative QCD at next-to-leading order. Phys. Rev. Lett. 100, 052301 (2008) [0708.4232]Google Scholar
  22. 22.
    J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore, D. Teaney, Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma. J. High Energy Phys. 05, 010 (2013) [1302.5970]Google Scholar
  23. 23.
    E. Braaten, T.C. Yuan, Calculation of screening in a hot plasma. Phys. Rev. Lett. 66, 2183 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    R.D. Pisarski, Scattering amplitudes in hot gauge theories. Phys. Rev. Lett. 63, 1129 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    J. Frenkel, J.C. Taylor, High temperature limit of thermal QCD. Nucl. Phys. B 334, 199 (1990)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys. B 337, 569 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Taylor, S.M.H. Wong, The effective action of Hard Thermal Loops in QCD. Nucl. Phys. B 346, 115 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    V.P. Silin, On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136 (1960) [Zh. Eksp. Teor. Fiz. 38, 1577 (1960)]Google Scholar
  29. 29.
    V.V. Klimov, Collective excitations in a hot quark gluon plasma. Sov. Phys. JETP 55, 199 (1982) [Zh. Eksp. Teor. Fiz. 82, 336 (1982)]Google Scholar
  30. 30.
    H.A. Weldon, Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    J. Frenkel, J.C. Taylor, Hard thermal QCD, forward scattering and effective actions. Nucl. Phys. B 374, 156 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    E. Braaten, R.D. Pisarski, Simple effective Lagrangian for Hard Thermal Loops. Phys. Rev. D 45, 1827 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Blaizot, E. Iancu, Kinetic equations for long wavelength excitations of the quark – gluon plasma. Phys. Rev. Lett. 70, 3376 (1993) [hep-ph/9301236]Google Scholar
  34. 34.
    P.F. Kelly, Q. Liu, C. Lucchesi, C. Manuel, Deriving the Hard Thermal Loops of QCD from classical transport theory. Phys. Rev. Lett. 72, 3461 (1994) [hep-ph/9403403]Google Scholar
  35. 35.
    F.T. Brandt, J. Frenkel, J.C. Taylor, High temperature QCD and the classical Boltzmann equation in curved space-time. Nucl. Phys. B 437, 433 (1995) [hep-th/9411130]ADSCrossRefGoogle Scholar
  36. 36.
    R.D. Pisarski, Nonabelian Debye Screening, Tsunami Waves, and Worldline Fermions. Lectures at International School of Astrophysics D. Chalonge, Erice (1997) [hep-ph/9710370]Google Scholar
  37. 37.
    D. Bödeker, On the effective dynamics of soft non-abelian gauge fields at finite temperature. Phys. Lett. B 426, 351 (1998) [hep-ph/9801430]Google Scholar
  38. 38.
    P. Arnold, D.T. Son, L.G. Yaffe, Hot B violation, color conductivity, and \(\log (1/\alpha )\) effects. Phys. Rev. D 59, 105020 (1999) [hep-ph/9810216]Google Scholar
  39. 39.
    D. Bödeker, Diagrammatic approach to soft non-Abelian dynamics at high temperature. Nucl. Phys. B 566, 402 (2000) [hep-ph/9903478]Google Scholar
  40. 40.
    P. Arnold, L.G. Yaffe, High temperature color conductivity at next-to-leading log order. Phys. Rev. D 62, 125014 (2000) [hep-ph/9912306]Google Scholar
  41. 41.
    D. Bödeker, Perturbative and non-perturbative aspects of the non-Abelian Boltzmann-Langevin equation. Nucl. Phys. B 647, 512 (2002) [hep-ph/0205202]Google Scholar
  42. 42.
    P. Aurenche, F. Gelis, H. Zaraket, A simple sum rule for the thermal gluon spectral function and applications. J. High Energy Phys. 05, 043 (2002) [hep-ph/0204146]Google Scholar
  43. 43.
    S. Caron-Huot, O(g) plasma effects in jet quenching. Phys. Rev. D 79, 065039 (2009) [0811.1603]Google Scholar
  44. 44.
    M. Panero, K. Rummukainen, A. Schäfer, Lattice study of the jet quenching parameter. Phys. Rev. Lett. 112, 162001 (2014) [1307.5850]Google Scholar
  45. 45.
    J.-P. Blaizot, J.-Y. Ollitrault, Collective fermionic excitations in systems with a large chemical potential. Phys. Rev. D 48, 1390 (1993) [hep-th/9303070]ADSCrossRefGoogle Scholar
  46. 46.
    H.A. Weldon, Dynamical holes in the quark-gluon plasma. Phys. Rev. D 40, 2410 (1989)ADSCrossRefGoogle Scholar
  47. 47.
    E. Petitgirard, Massive fermion dispersion relation at finite temperature. Z. Phys. C 54, 673 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    P.M. Chesler, A. Gynther, A. Vuorinen, On the dispersion of fundamental particles in QCD and \(\mathcal{N} = 4\) super Yang-Mills theory. J. High Energy Phys. 09, 003 (2009) [0906.3052]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mikko Laine
    • 1
  • Aleksi Vuorinen
    • 2
  1. 1.AEC, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations