Low-Energy Effective Field Theories

  • Mikko Laine
  • Aleksi Vuorinen
Part of the Lecture Notes in Physics book series (LNP, volume 925)


The existence of a so-called infrared (IR) problem in relativistic thermal field theory is pointed out, both from a physical and a formal (imaginary-time) point of view. The notion of effective field theories is introduced, and the main issues related to their construction and use are illustrated with the help of a simple example. Subsequently this methodology is applied to the imaginary-time path integral representation for the partition function of non-Abelian gauge field theory. This leads to the construction of a dimensionally reduced effective field theory for capturing certain (so-called “static”, i.e. time-independent) properties of QCD (or more generally Standard Model) thermodynamics in the high-temperature limit.


Bose enhancement Effective theories Electrostatic QCD Hard and soft modes Infrared divergences Linde problem Magnetostatic QCD Matching Matsubara zero mode Power counting Symmetries Truncation 


  1. 1.
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas. Phys. Lett. B 96, 289 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Collins, Renormalization (Cambridge University Press, Cambridge, 1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    K. Jansen et al., Non-perturbative renormalization of lattice QCD at all scales. Phys. Lett. B 372, 275 (1996) [hep-lat/9512009]Google Scholar
  4. 4.
    P. Weisz, Renormalization and lattice artifacts. arXiv:1004.3462.Google Scholar
  5. 5.
    P. Ginsparg, First and second order phase transitions in gauge theories at finite temperature. Nucl. Phys. B 170, 388 (1980)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Appelquist, R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional Quantum Chromodynamics. Phys. Rev. D 23, 2305 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the Standard Model. Nucl. Phys. B 458, 90 (1996) [hep-ph/9508379]Google Scholar
  8. 8.
    S. Chapman, A new dimensionally reduced effective action for QCD at high temperature. Phys. Rev. D 50, 5308 (1994) [hep-ph/9407313]Google Scholar
  9. 9.
    A. Hart, M. Laine, O. Philipsen, Static correlation lengths in QCD at high temperatures and finite densities. Nucl. Phys. B 586, 443 (2000) [hep-ph/0004060]Google Scholar
  10. 10.
    S. Nadkarni, Dimensional reduction in finite temperature Quantum Chromodynamics. 2. Phys. Rev. D 38, 3287 (1988)Google Scholar
  11. 11.
    N.P. Landsman, Limitations to dimensional reduction at high temperature. Nucl. Phys. B 322, 498 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    S. Huang, M. Lissia, The Relevant scale parameter in the high temperature phase of QCD. Nucl. Phys. B 438, 54 (1995) [hep-ph/9411293]Google Scholar
  13. 13.
    M. Laine, Y. Schröder, Two-loop QCD gauge coupling at high temperatures. JHEP 03, 067 (2005) [hep-ph/0503061]Google Scholar
  14. 14.
    K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, High temperature dimensional reduction and parity violation, Phys. Lett. B 423, 137 (1998) [hep-ph/9710538]Google Scholar
  15. 15.
    D.J. Gross, R.D. Pisarski, L.G. Yaffe, QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Kanazawa, N. Yamamoto, U(1) axial symmetry and Dirac spectra in QCD at high temperature. JHEP 01, 141 (2016) [1508.02416]Google Scholar
  17. 17.
    S. Caron-Huot, G.D. Moore, Heavy quark diffusion in perturbative QCD at next-to-leading order. Phys. Rev. Lett. 100, 052301 (2008) [0708.4232].Google Scholar
  18. 18.
    F. Di Renzo, M. Laine, V. Miccio, Y. Schröder, C. Torrero, The Leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure. JHEP 07, 026 (2006) [hep-ph/0605042]Google Scholar
  19. 19.
    S. Weinberg, Baryon and Lepton nonconserving processes. Phys. Rev. Lett. 43, 1566 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    F. Wilczek, A. Zee, Operator analysis of nucleon decay. Phys. Rev. Lett. 43, 1571 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    P.B. Arnold, L.G. Yaffe, The non-Abelian Debye screening length beyond leading order. Phys. Rev. D 52, 7208 (1995) [hep-ph/9508280]Google Scholar
  22. 22.
    M. D’Onofrio, K. Rummukainen, A. Tranberg, Sphaleron rate in the Minimal Standard Model. Phys. Rev. Lett. 113, 141602 (2014) [1404.3565]Google Scholar
  23. 23.
    L.F. Abbott, The background field method beyond one loop. Nucl. Phys. B 185, 189 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    I. Ghisoiu, J.Möller, Y. Schröder, Debye screening mass of hot Yang-Mills theory to three-loop order. JHEP 11, 121 (2015) [1509.08727]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mikko Laine
    • 1
  • Aleksi Vuorinen
    • 2
  1. 1.AEC, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations