Skip to main content

Free Scalar Fields

  • Chapter
  • First Online:
  • 3014 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 925))

Abstract

The concepts of Sect. 1 are generalized to the case of a free massive scalar field living in a d + 1 dimensional spacetime. This can be viewed as a system of infinitely many coupled harmonic oscillators. The resulting imaginary-time path integral for the partition function is expressed in Fourier representation. Matsubara sums are evaluated both in a low-temperature and a high-temperature expansion. The numerical convergence of these expansions, as well as some of their general properties, are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Apart from a chemical potential, the parameter c can also appear in a system with “shifted boundary conditions” over a compact direction, cf. e.g. [1].

  2. 2.

    A quick derivation: On one hand, \(\int \!\mathrm{d}^{d}\mathbf{k}\,e^{-tk^{2} } = [\int _{-\infty }^{\infty }\mathrm{d}k_{1}e^{-tk_{1}^{2}}]^{d} = (\pi /t)^{\frac{d} {2} }\). On the other hand, \(\int \!\mathrm{d}^{d}\mathbf{k}\,e^{-tk^{2} } = c(d)\int _{0}^{\infty }\mathrm{d}k\,k^{d-1}e^{-tk^{2} } = c(d)t^{-\frac{d}{2} }\int _{ 0}^{\infty }\mathrm{d}x\,x^{d-1}e^{-x^{2}} = c(d)\Gamma (\frac{d} {2} )/2t^{\frac{d} {2} }\). Thereby \(c(d) = 2\pi ^{\frac{d} {2} }/\Gamma (\frac{d}{2})\).

  3. 3.

    When systems with a finite chemical potential are considered, cf. Eq. (2.45), one has to abandon the standard convention of denoting the scale parameter by μ; frequently the notation \(\Lambda \) is used instead.

  4. 4.

    The \(\mathcal{O}(\epsilon )\) terms could be obtained by noting from Eq. (2.61) that for d = 3 − 2ε, \(\mu ^{2\epsilon }\mathrm{d}^{d}\mathbf{k}/(2\pi )^{d} = \mathrm{d}^{3}\mathbf{k}/(2\pi )^{3}\{1 +\epsilon [\ln (\bar{\mu }^{2}/4k^{2}) + 2] + \mathcal{O}(\epsilon ^{2})\}\).

  5. 5.

    However the following convergent sum representations apply: \(J_{T}^{}(m) = -\frac{m^{2}T^{2}} {2\pi ^{2}} \sum _{n=1}^{\infty } \frac{1} {n^{2}} K_{2}^{}(\frac{nm} {T} )\), \(I_{T}^{}(m) = \frac{mT} {2\pi ^{2}} \sum _{n=1}^{\infty }\frac{1} {n}K_{1}^{}(\frac{nm} {T} )\), with K n a modified Bessel function.

References

  1. L. Giusti, H.B. Meyer, Thermodynamic potentials from shifted boundary conditions: the scalar-field theory case. J. High Energy Phys. 11, 087 (2011) [1110.3136]

    Google Scholar 

  2. L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320 (1974)

    Article  ADS  Google Scholar 

  3. P. Arnold, C. Zhai, The three loop free energy for pure gauge QCD. Phys. Rev. D 50, 7603 (1994) [hep-ph/9408276]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix A: Properties of the Euler \(\Gamma \) and Riemann ζ functions

\(\fbox{\mbox{$\displaystyle \varGamma(s)$}}\)

The function \(\Gamma (s)\) is to be viewed as a complex-valued function of a complex variable s. For \(\mathop{\mathrm{Re}}(s) > 0\), it can be defined as

$$\displaystyle{ \Gamma (s) \equiv \int _{0}^{\infty }\!\mathrm{d}x\,x^{s-1}e^{-x}\;, }$$
(2.96)

whereas for \(\mathop{\mathrm{Re}}(s) \leq 0\), the values can be obtained through the iterative use of the relation

$$\displaystyle{ \Gamma (s) = \frac{\Gamma (s + 1)} {s} \;. }$$
(2.97)

On the real axis, \(\Gamma (s)\) is regular at s = 1; as a consequence of Eq. (2.97), it then has first-order poles at s = 0, −1, −2,  .

In practical applications, the argument s is typically close to an integer or a half-integer. In the former case, we can use Eq. (2.97) to relate the desired value to the behavior of \(\Gamma (s)\) and its derivatives around s = 1, which can in turn be worked out from the convergent integral representation in Eq. (2.96). In particular,

$$\displaystyle{ \Gamma (1) = 1\;,\quad \Gamma '(1) = -\gamma _{\mbox{ E}}\;, }$$
(2.98)

where γ E is the Euler constant, γ E = 0. 577215664901 . In the latter case, we can similarly use Eq. (2.97) to relate the desired value to \(\Gamma (s)\) and its derivatives around \(s = \frac{1} {2}\), which can again be worked out from the integral representation in Eq. (2.96), producing

$$\displaystyle{ \Gamma {\bigl (\frac{1} {2}\bigr )} = \sqrt{\pi }\;,\quad \Gamma '{\bigl (\frac{1} {2}\bigr )} = \sqrt{\pi }(-\gamma _{\mbox{ E}} - 2\ln 2)\;. }$$
(2.99)

The values required for Eq. (2.91) thus become

$$\displaystyle\begin{array}{rcl} \Gamma {\bigl ( -\frac{1} {2}+\epsilon \bigr )}& =& -2\sqrt{\pi } + \mathcal{O}(\epsilon )\;,{}\end{array}$$
(2.100)
$$\displaystyle\begin{array}{rcl} \Gamma {\bigl (\frac{1} {2}+\epsilon \bigr )}& =& \sqrt{\pi }{\Bigl [1 -\epsilon (\gamma _{\mbox{ E}} + 2\ln 2) + \mathcal{O}(\epsilon ^{2})\Bigr ]}\;,{}\end{array}$$
(2.101)
$$\displaystyle\begin{array}{rcl} \Gamma {\bigl (\frac{3} {2}+\epsilon \bigr )}& =& \frac{\sqrt{\pi }} {2} + \mathcal{O}(\epsilon )\;.{}\end{array}$$
(2.102)

We have gone one order higher in the middle expansion, because this function is multiplied by 1∕ε in the result (cf. Eq. (2.112)).

\(\fbox{\mbox{$\displaystyle \zeta(s)$}}\)

The function ζ(s) is also to be viewed as a complex-valued function of a complex argument s. For \(\mathop{\mathrm{Re}}(s) > 1\), it can be defined as

$$\displaystyle{ \zeta (s) =\sum _{ n=1}^{\infty }n^{-s} = \frac{1} {\Gamma (s)}\int _{0}^{\infty }\!\frac{\mathrm{d}x\,x^{s-1}} {e^{x} - 1} \;, }$$
(2.103)

where the equivalence of the two forms can be seen by writing \(1/(e^{x} - 1) = e^{-x}/(1 - e^{-x}) =\sum _{ n=1}^{\infty }e^{-nx}\), and using the definition of the \(\Gamma \)-function in Eq. (2.96). Some remarkable properties of ζ(s) follow from the fact that by writing

$$\displaystyle{ \frac{1} {e^{x} - 1} = \frac{1} {(e^{x/2} - 1)(e^{x/2} + 1)} = \frac{1} {2}{\biggl [ \frac{1} {e^{x/2} - 1} - \frac{1} {e^{x/2} + 1}\biggr ]}\;, }$$
(2.104)

and then substituting integration variables through x → 2x, we can find an alternative integral representation,

$$\displaystyle{ \zeta (s) = \frac{1} {(1 - 2^{1-s})\Gamma (s)}\int _{0}^{\infty }\!\frac{\mathrm{d}x\,x^{s-1}} {e^{x} + 1} \;, }$$
(2.105)

defined for \(\mathop{\mathrm{Re}}(s) > 0\), s ≠ 1. Even though the integral here clearly diverges at s → 0, the function \(\Gamma (s)\) also diverges at the same point, making ζ(s) regular around origin:

$$\displaystyle\begin{array}{rcl} \zeta (0)& =& -\frac{1} {2}\;,{}\end{array}$$
(2.106)
$$\displaystyle\begin{array}{rcl} \zeta '(0)& =& -\frac{1} {2}\ln (2\pi )\;.{}\end{array}$$
(2.107)

Finally, for \(\mathop{\mathrm{Re}}(s) \leq 0\), an analytic continuation is obtained through the relation

$$\displaystyle{ \zeta (s) = 2^{s}\pi ^{s-1}\sin {\Bigl ( \frac{\pi s} {2}\Bigr )}\Gamma (1 - s)\zeta (1 - s)\;. }$$
(2.108)

On the real axis, ζ(s) has a pole only at s = 1. Its values at even arguments are “easy”; in fact, at even negative integers, Eq. (2.108) implies that

$$\displaystyle{ \zeta (-2n) = 0\;,\quad n = 1,2,3,\ldots \;, }$$
(2.109)

whereas at positive even integers the values can be related to the Bernoulli numbers,

$$\displaystyle{ \zeta (2) = \frac{\pi ^{2}} {6}\;,\quad \zeta (4) = \frac{\pi ^{4}} {90}\;,\ldots \;. }$$
(2.110)

Negative odd integers can be related to positive even ones through Eq. (2.108), which also allows us to determine the behaviour of the function around the pole at s = 1. In contrast, odd positive integers larger than unity, i.e. s = 3, 5, , yield new transcendental numbers.

The values required in Eq. (2.91) become

$$\displaystyle\begin{array}{rcl} \zeta (-1 + 2\epsilon )& =& -\frac{1} {2\pi ^{2}}\Gamma (2)\zeta (2) + \mathcal{O}(\epsilon ) = -\frac{1} {12} + \mathcal{O}(\epsilon )\;,{}\end{array}$$
(2.111)
$$\displaystyle\begin{array}{rcl} \zeta (1 + 2\epsilon )& =& 2^{1+2\epsilon }\pi ^{2\epsilon }{\Bigl [\sin {\Bigl ( \frac{\pi } {2}\Bigr )} +\pi \epsilon \cos {\Bigl ( \frac{\pi } {2}\Bigr )}\Bigr ]}{\biggl ( -\frac{1} {2\epsilon }\biggr )}\Gamma (1 - 2\epsilon )\zeta (-2\epsilon ) \\ & =& 2(1 + 2\epsilon \ln 2)(1 + 2\epsilon \ln \pi ){\biggl ( -\frac{1} {2\epsilon }\biggr )}(1 + 2\epsilon \gamma _{\mbox{ E}}){\bigl ( -\frac{1} {2}\bigr )}(1 - 2\epsilon \ln 2\pi ) \\ & & +\mathcal{O}(\epsilon ) \\ & =& \frac{1} {2\epsilon } +\gamma _{\mbox{ E}} + \mathcal{O}(\epsilon )\;, {}\end{array}$$
(2.112)
$$\displaystyle\begin{array}{rcl} \zeta (3 + 2\epsilon )& =& \zeta (3) + \mathcal{O}(\epsilon ) \approx 1.2020569031\ldots + \mathcal{O}(\epsilon )\;,{}\end{array}$$
(2.113)

where in the first two cases we made use of Eq. (2.108), and in the second also of Eqs. (2.106) and (2.107).

Appendix B: Numerical Convergence

We complete here the derivation of Eq. (2.91), and sketch the regimes where the low and high-temperature expansions are numerically accurate by inspecting J T (m) from Eq. (2.82).

First of all, for the term l = 0 in Eq. (2.90), we make use of the results of Eqs. (2.100) and (2.111):

$$\displaystyle{ \left.I'(m,T)\right \vert _{l=0} = \frac{2T} {(4\pi )^{3/2}}(2\pi T)\frac{-2\sqrt{\pi }} {1} {\biggl ( - \frac{1} {12}\biggr )} + \mathcal{O}(\epsilon ) = \frac{T^{2}} {12} + \mathcal{O}(\epsilon )\;. }$$
(2.114)

For the term l = 1, we on the other hand insert the values of Eqs. (2.101) and (2.112):

$$\displaystyle\begin{array}{rcl} \left.I'(m,T)\right \vert _{l=1}& = & 2T \frac{(4\pi )^{\epsilon }} {(4\pi )^{3/2}}(2\pi T)^{1-2\epsilon }{\biggl [ \frac{-m^{2}} {(2\pi T)^{2}}\biggr ]} \\ & & \times \sqrt{\pi }{\Bigl [1 -\epsilon (\gamma _{\mbox{ E}} + 2\ln 2)\Bigr ]}\frac{1} {2\epsilon }(1 + 2\epsilon \gamma _{\mbox{ E}}) + \mathcal{O}(\epsilon ) \\ & \stackrel{1 =\mu ^{-2\epsilon }\mu ^{2\epsilon }}{=}& -\frac{m^{2}\mu ^{-2\epsilon }} {(4\pi )^{2}} {\biggl \{\frac{1} {\epsilon } +\ln \frac{\mu ^{2}} {T^{2}} +\ln (4\pi ) -\gamma _{\mbox{ E}} + 2[\gamma _{\mbox{ E}} -\ln (4\pi )]\biggr \}} \\ & & +\mathcal{O}(\epsilon ) \\ & \stackrel{\mbox{ (2.71)}}{=} & -\frac{m^{2}\mu ^{-2\epsilon }} {(4\pi )^{2}} {\biggl \{\frac{1} {\epsilon } +\ln \frac{\bar{\mu }^{2}} {T^{2}} + 2\ln {\Bigl (\frac{e^{\gamma _{\mbox{ E}}}} {4\pi } \Bigr )}\biggr \}} + \mathcal{O}(\epsilon )\;. {}\end{array}$$
(2.115)

Finally, for the term l = 2, we make use of Eqs. (2.102) and (2.113), giving:

$$\displaystyle{ \left.I'(m,T)\right \vert _{l=2} = \frac{2T} {(4\pi )^{3/2}}(2\pi T) \frac{m^{4}} {(2\pi T)^{4}} \frac{\frac{1} {2}\sqrt{\pi }} {2} \zeta (3) + \mathcal{O}(\epsilon ) = \frac{2m^{4}\zeta (3)} {(4\pi )^{4}T^{2}} + \mathcal{O}(\epsilon )\;. }$$
(2.116)

For the numerical evaluation of J T (m), we again denote y ≡ mT and inspect the function

$$\displaystyle{ \mathcal{J} (y) \equiv \frac{J_{T}^{}(m)} {T^{4}} = \frac{1} {2\pi ^{2}}\int _{0}^{\infty }\!\mathrm{d}x\,x^{2}\,\ln {\Bigl (1 - e^{-\sqrt{x^{2 } +y^{2}} }\Bigr )}\;. }$$
(2.117)

We contrast this with the low-temperature result from Eq. (2.79),

$$\displaystyle{ \mathcal{J} (y)\stackrel{y \gg 1}{\approx }-{\biggl (\frac{y} {2\pi }\biggr )}^{\frac{3} {2} }e^{-y}\;, }$$
(2.118)

as well as with the high-temperature expansion from Eq. (2.82),

$$\displaystyle{ \mathcal{J} (y)\stackrel{y \ll 1}{\approx } = - \frac{\pi ^{2}} {90} + \frac{y^{2}} {24} -\frac{y^{3}} {12\pi } - \frac{y^{4}} {2(4\pi )^{2}}{\biggl [\ln {\biggl (\frac{ye^{\gamma _{\mbox{ E}}}} {4\pi } \biggr )} -\frac{3} {4}\biggr ]} + \frac{y^{6}\zeta (3)} {3(4\pi )^{4}}\;. }$$
(2.119)

The result of the comparison is shown in Fig. 2.1. We observe that if we keep terms up to y 6 in the high-temperature expansion, its numerical convergence is good for \(y\mathop{\mbox{ $ <$ $\sim $}}3\). On the other hand, the low-temperature expansion converges reasonably well as soon as \(y\mathop{\mbox{ $ >$ $\sim $}}6\). In between, a numerical evaluation of the integral is clearly necessary. It should be stressed that these statements are to be understood in a pragmatic sense, rather than as mathematically defined convergence radii.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laine, M., Vuorinen, A. (2016). Free Scalar Fields. In: Basics of Thermal Field Theory. Lecture Notes in Physics, vol 925. Springer, Cham. https://doi.org/10.1007/978-3-319-31933-9_2

Download citation

Publish with us

Policies and ethics