Skip to main content

Data Mining and Clinical Decision Support Systems

  • Chapter
  • First Online:

Part of the book series: Health Informatics ((HI))

Abstract

Data mining is a process of pattern and relationship discovery within large sets of data. Because of the large volume of data generated in healthcare settings, it is not surprising that healthcare organizations have been interested in data mining to enhance physician practices, disease management, and resource utilization. This chapter discusses a variety of data mining techniques that have been used to develop clinical decision support systems, including decision trees, neural networks, logistic regression, nearest neighbor classifiers. In addition, genetic algorithms, biologic and quantum computing, and big data analytics as well as methods of evaluating and comparing the different approaches are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fayyad UM, Piatetsky-Shapiro G, Smyth P. Knowledge discovery and data mining: towards a unifying framework. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland. pp. 82–88. August 1996. AAAI Press. Available from: http://ww-aig.jpl.nasa.gov.kdd96. Accessed 17 July 2006.

  2. Leatherman S, Peterson E, Heinen L, Quam L. Quality screening and management using claims data in a managed care setting. QRB Qual Rev Bull. 1991;17:349–59.

    CAS  PubMed  Google Scholar 

  3. Finlay PN. Introducing decision support systems. Cambridge, MA: Blackwell Publishers; 1994.

    Google Scholar 

  4. Huber S, Medl M, Vesely M, Czembirek H, Zuna I, Delorme S. Ultrasonographic tissue characterization in monitoring tumor response to neoadjuvant chemotherapy in locally advanced breast cancer (work in progress). J Ultrasound Med. 2000;19:677–86.

    CAS  PubMed  Google Scholar 

  5. Christodoulou CI, Pattichis CS. Unsupervided pattern recognition for the classification of EMG signals. IEEE Trans Biomed Eng. 1999;46:169–78.

    Article  CAS  PubMed  Google Scholar 

  6. Karayiannis NB, Mukherjee A, Glover JR, Frost J, Hrachovy JR, Mizrahi EM. An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram. Soft Comput. 2006;10:382–96.

    Article  Google Scholar 

  7. Banez LL, Prasanna P, Sun L, et al. Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol. 2003;170(2 Pt 1):442–26.

    Article  CAS  PubMed  Google Scholar 

  8. Leonard JE, Colombe JB, Levy JL. Finding relevant references to genes and proteins in Medline using a Bayesian approach. Bioinformatics. 2002;18:1515–22.

    Article  CAS  PubMed  Google Scholar 

  9. Bins M, van Montfort LH, Timmers T, Landeweerd GH, Gelsema ES, Halie MR. Classification of immature and mature cells of the neutrophil series using morphometrical parameters. Cytometry. 1983;3:435–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hibbard LS, McKeel Jr DW. Automated identification and quantitative morphometry of the senile plaques of Alzheimer’s disease. Anal Quant Cytol Histol. 1997;19:123–38.

    CAS  PubMed  Google Scholar 

  11. Baumgartner C, Bohm C, Baumgartner D, et al. Supervised machine learning techniques for the classification of metabolic disorders in newborns. Bioinformatics. 2004;20:2985–96.

    Article  CAS  PubMed  Google Scholar 

  12. Gordon HS, Johnson ML, Wray NP, et al. Mortality after noncardiac surgery: prediction from administrative versus clinical data. Med Care. 2005;43:159–67.

    Article  PubMed  Google Scholar 

  13. Ocak H. A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst. 2013;37:1–9.

    Article  Google Scholar 

  14. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015. pp. 1721–30.

    Google Scholar 

  15. Tekin C, Atan O, van der Schaar M. Discover the expert: context-adaptive expert selection for medical diagnosis. IEEE Trans Emerg Topics Comput. 2015;3:220–34. IEEE.

    Article  Google Scholar 

  16. Zhuang ZY, Churilov L, Burstein F, Sikaris K. Combining data mining and case-based reasoning for intelligent decision support for pathology ordering by general practitioners. Eur J Oper Res. 2009;195:662–75.

    Article  Google Scholar 

  17. Rane AL. Clinical decision support model for prevailing diseases to improve human life survivability. 2015 International Conference on Pervasive Computing (ICPC), 2015. pp. 1–5.

    Google Scholar 

  18. Wang X, Sontag D, Wang F. Unsupervised learning of disease progression models. Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. 2014. pp. 85–94.

    Google Scholar 

  19. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep. 2014;16:1–8.

    Article  Google Scholar 

  20. Anooj P. Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules. J King Saud Univ-Comput Inf Sci. 2012;24:27–40.

    Google Scholar 

  21. Srinivas K, Rani BK, Govrdhan A. Applications of data mining techniques in healthcare and prediction of heart attacks. Int J Comput Sci Eng (IJCSE). 2010;2:250–5.

    Google Scholar 

  22. Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee T-W, Sejnowski TJ, et al. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Investig Ophthalmol Vis Sci. 2002;43:3444–54.

    Google Scholar 

  23. Lin A, Hoffman D, Gaasterland DE, Caprioli J. Neural networks to identify glaucomatous visual field progression. Am J Ophthalmol. 2003;135:49–54.

    Article  PubMed  Google Scholar 

  24. Bengtsson B, Bizios D, Heijl A. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2005;46:3730–6.

    Article  PubMed  Google Scholar 

  25. Al-Hyari AY, Al-Taee AM, Al-Taee MA. Diagnosis and classification of chronic renal failure utilising intelligent data mining classifiers. Int J Inf Technol Web Eng (IJITWE). 2014;9:1–12.

    Article  Google Scholar 

  26. Yeh D-Y, Cheng C-H, Chen Y-W. A predictive model for cerebrovascular disease using data mining. Expert Syst Applic. 2011;38:8970–7.

    Article  Google Scholar 

  27. Lee BJ, Kim JY. Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning. IEEE J Biomed Health Inform. 2016;20(1):39–46. doi:10.1109/JBHI.2015.2396520.

    Google Scholar 

  28. Dugan T, Mukhopadhyay S, Carroll A, Downs S, et al. Machine learning techniques for prediction of early childhood obesity. Appl Clin Inform. 2015;6:506–20.

    Article  CAS  PubMed  Google Scholar 

  29. Marakas GM. Decision support systems. 2nd ed. Princeton: Prentice Hall; 2002.

    Google Scholar 

  30. Ambrosiadou BV, Goulis DG, Pappas C. Clinical evaluation of the DIABETES expert system for decision support by multiple regimen insulin dose adjustment. Comp Methods Programs Biomed. 1996;49:105–15.

    Article  CAS  Google Scholar 

  31. Marchevsky AM, Coons G. Expert systems as an aid for the pathologist’s role of clinical consultant: CANCER-STAGE. Mod Pathol. 1993;6:265–9.

    CAS  PubMed  Google Scholar 

  32. Nguyen AN, Hartwell EA, Milam JD. A rule-based expert system for laboratory diagnosis of hemoglobin disorders. Arch Pathol Lab Med. 1996;120:817–27.

    CAS  PubMed  Google Scholar 

  33. Papaloukas C, Fotiadis DI, Likas A, Stroumbis CS, Michalis LK. Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGs. J Electrocardiol. 2002;35:27–34.

    Article  PubMed  Google Scholar 

  34. Riss PA, Koelbl H, Reinthaller A, Deutinger J. Development and application of simple expert systems in obstetrics and gynecology. J Perinat Med. 1988;16:283–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sailors RM, East TD. A model-based simulator for testing rule-based decision support systems for mechanical ventilation of ARDS patients. Proc Ann Symp Comp Appl Med Care. 1994:1007. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247879/.

  36. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8:303–20.

    Article  CAS  PubMed  Google Scholar 

  37. Duda RO, Hart PE, Stork DG. Pattern classification and scene analysis. 2nd ed. New York: Wiley; 2000.

    Google Scholar 

  38. Fukunaga K. Introduction to statistical pattern recognition. 2nd ed. New York: Academic; 1990.

    Google Scholar 

  39. Schalkoff RJ. Pattern recognition: statistical, structural and neural approaches. New York: Wiley; 1991.

    Google Scholar 

  40. Goldman L, Cook EF, Brand DA, et al. A computer protocol to predict myocardial infarction in emergency department patients with chest pain. N Engl J Med. 1988;318:797–803.

    Article  CAS  PubMed  Google Scholar 

  41. Qamar A, McPherson C, Babb J, Bernstein L, Werdmann M, Yasick D, et al. The Goldman algorithm revisited: prospective evaluation of a computer-derived algorithm versus unaided physician judgment in suspected acute myocardial infarction. Am Heart J. 1999;138:705–9.

    Article  CAS  PubMed  Google Scholar 

  42. Scott AJ, Wild CJ. Fitting logistic models under case-control or choice based sampling. J Roy Stat Soc B. 1986;48:170–82.

    Google Scholar 

  43. Avanzolini G, Barbini P, Gnudi G. Unsupervised learning and discriminant analysis applied to identification of high risk postoperative cardiac patients. Int J Biomed Comp. 1990;25:207–21.

    Article  CAS  Google Scholar 

  44. Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG, et al. Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med. 2006;36:1351–77.

    Article  PubMed  Google Scholar 

  45. Gerald LB, Tang S, Bruce F, et al. A decision tree for tuberculosis contact investigation [see comment]. Am J Respir Crit Care Med. 2002;166:1122–7.

    Article  PubMed  Google Scholar 

  46. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008;77:81–97.

    Article  PubMed  Google Scholar 

  47. Wang TL, Jang TN, Huang CH, et al. Establishing a clinical decision rule of severe acute respiratory syndrome at the emergency department. Ann Emerg Med. 2004;43:17–22.

    Article  CAS  PubMed  Google Scholar 

  48. Gibbs P, Turnbull LW. Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med. 2003;50:92–8.

    Article  PubMed  Google Scholar 

  49. Haykin S. Neural networks and learning machines. New York: Prentice Hall/Pearson; 2009.

    Google Scholar 

  50. Joo S, Yang YS, Moon WK, Kim HC. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Transact Med Imaging. 2004;23:1292–300.

    Article  Google Scholar 

  51. Walsh P, Cunningham P, Rothenberg SJ, O’Doherty S, Hoey H, Healy R. An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis. Eur J Emerg Med. 2004;11:259–564.

    Article  PubMed  Google Scholar 

  52. Burroni M, Corona R, Dell’Eva G, et al. Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res. 2004;10:1881–6.

    Article  PubMed  Google Scholar 

  53. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in FORTRAN example book: the art of scientific computing. 2nd ed. New York: Cambridge University Press; 1992.

    Google Scholar 

  54. Collins FS, Varmus H. A new initiative on precision medicine. New Engl J Med Mass Med Soc. 2015;372:793–5.

    Article  CAS  Google Scholar 

  55. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  56. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang X, Cai B, Xue D, Lu X, Cooper GF, Neapolitan RE. A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets. J Am Med Inform Assoc. 2014;21:e312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zellner BB, Rand SD, Prost R, Krouwer H, Chetty VK. A cost-minimizing diagnostic methodology for discrimination between neoplastic and non-neoplastic brain lesions: utilizing a genetic algorithm. Acad Radiol. 2004;11:169–77.

    Article  PubMed  Google Scholar 

  59. Bozcuk H, Bilge U, Koyuncu E, Gulkesen H. An application of a genetic algorithm in conjunction with other data mining methods for estimating outcome after hospitalization in cancer patients. Med Sci Monit. 2004;10:CR246–51.

    PubMed  Google Scholar 

  60. Ravindran S, Jambek AB, Muthusamy H, Neoh S-C. A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being. Comput Math Methods Med. 2015;2015:283532. doi:10.1155/2015/283532.

    Google Scholar 

  61. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. Amplifying genetic logic gates. Science. 2013;340:599–603.

    Article  CAS  PubMed  Google Scholar 

  62. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature. 2004;429:423–9.

    Article  CAS  PubMed  Google Scholar 

  63. Saeedi K, Simmons S, Salvail JZ, Dluhy P, Riemann H, Abrosimov NV, et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science. 2013;342:830–3.

    Article  CAS  PubMed  Google Scholar 

  64. Lu T-C, Yu G-R, Juang J-C. Quantum-based algorithm for optimizing artificial neural networks. IEEE Trans Neural Netw Learn Syst. 2013;24:1266–78.

    Article  Google Scholar 

  65. Zadeh LA. Fuzzy sets. Information and control. World Sci. 1965;8:338–53.

    Google Scholar 

  66. Rokach L. Using fuzzy logic in data mining. In: Maimon O, Rokach L, editors. Data mining and knowledge discovery handbook. New York: Springer; 2010. p. 505–20.

    Google Scholar 

  67. Nguyen T, Khosravi A, Creighton D, Nahavandi S. Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Syst Applic. 2015;42:2184–97.

    Article  Google Scholar 

  68. Seera M, Lim CP. A hybrid intelligent system for medical data classification. Expert Syste Applic. 2014;41:2239–49.

    Article  Google Scholar 

  69. Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, et al. The National Institutes of health’s big data to knowledge (BD2K) initiative: capitalizing on biomedical big data. JAMIA. 2014;21:957–8.

    PubMed  PubMed Central  Google Scholar 

  70. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012;13:395–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunyamin Ozaydin Ph.D. .

Editor information

Editors and Affiliations

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ozaydin, B., Hardin, J.M., Chhieng, D.C. (2016). Data Mining and Clinical Decision Support Systems. In: Berner, E. (eds) Clinical Decision Support Systems. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-31913-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31913-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31911-7

  • Online ISBN: 978-3-319-31913-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics