Skip to main content

Introduction

  • Chapter
  • First Online:
Pelton Turbines

Abstract

In nature, hydraulic energy is a type of usable energy which can be directly converted into mechanical energy. It has since more than one hundred years mainly been utilized for the production of electricity. As a most important type of the renewable energy, hydraulic energy shows its very broad perspective in the future. More and more hydropower plants will be built or refurbished worldwide. In many countries, hydraulic energy will be the main source for producing electrical energy. In Norway, for example, almost the entire production of electricity is from the hydropower. According to the Swiss Federal Office of Energy (BFE 2004), the hydropower provides about 60 % of the total electricity production in Switzerland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angehrn, R. (2000). Safety engineering for the 423 MW-Pelton-runners at Bieudron. Proceeding of the 20th IAHR Symposium, Charlotte, NC.

    Google Scholar 

  • Berntsen, G., Brekke, H., Haugen, J., & Risberg, S. (2001). Analysis of the free surface non-stationary flow in a Pelton turbine. Hydro 2001, Riva del Garda, Italy.

    Google Scholar 

  • BFE. (2004). Ausbaupotential der Wasserkraft. Bundesamt für Energie (BFE), Bern.

    Google Scholar 

  • Bohl, W. (2004). Strömungsmaschinen 1 (9. Auflage). Vogel Buchverlag.

    Google Scholar 

  • Bohl, W. (2005). Strömungsmaschinen 2 (7. Auflage). Vogel Buchverlag.

    Google Scholar 

  • Brekke, H. (2005). State of the art of small hydro turbines versus large turbines. Hydro 2005, Villach, Austria.

    Google Scholar 

  • Giesecke, J., & Mosonyi, E. (2005). Wasserkraftanlagen (4th ed.). Berlin: Springer.

    Google Scholar 

  • Grein, H., & Angehrn, R. (1986). Service life of Pelton runners under corrosion fatigue. International Symposium on Fluid Machinery Troubleshooting, ASME Winter Annual Meeting, Anaheim, California, FED-Vol. 46/PWR-Vol. 2.

    Google Scholar 

  • Grein, H., Angehrn, R., Lorenz, M., & Bezinge, A. (1984). Inspection periods of Pelton runners. Proceedings of the 12th IAHR Symposium on Hydraulic Machinery, Stirling.

    Google Scholar 

  • Grein, H., Meier, J., & Klicov, D. (1986). Efficiency scale effects in Pelton turbines. Proceedings of the XIII IAHR Symposium on Hydraulic Machinery and Cavitation, Montreal, Canada.

    Google Scholar 

  • Kishioka, E., & Osawa, K. (1972). Investigation into the problem of losses of the Pelton wheel. 2nd International JSME Symposium on Fluid Machinery and Fluidics, Tokyo, Japan.

    Google Scholar 

  • Kubota, T., Xia, J., Takeuchi, H., Saito, T., Masuda, J., & Nakanishi, Y. (1998). Numerical analysis of free water sheet flow on Pelton buckets. Proceedings of the 19th IAHR Symposium, Singapore.

    Google Scholar 

  • Kvicinsky, S., Kueny, J., Avellan, F., & Parkinson, E. (2002). Experimental and numerical analysis of free surface flows in a rotating bucket. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland.

    Google Scholar 

  • Mack, R., & Moser, W. (2002). Numerical investigations of the flow in a Pelton turbine. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland.

    Google Scholar 

  • Maldet, R. (2008). Pelton runner with high erosion caused by glacier sediment: assessment and measures. 15th International Seminar on Hydropower Plants (pp. 639–646), Vienna, Austria.

    Google Scholar 

  • Menny, K. (2005). Strömungsmaschinen (5. Auflage). Teubner-Verlag.

    Google Scholar 

  • Muggli, F., Zhang, Zh., Schärer, C., & Geppert, L. (2000). Numerical and experimental analysis of Pelton turbine flow, Part 2: The free surface jet flow. Proceedings of the 20th IAHR Symposium, Charlotte, NC.

    Google Scholar 

  • Parkinson, E., Garcin, H., Vullioud, G., Zhang, Zh., Muggli, F., & Casartelli, E. (2002). Experimental and numerical investigations of the free jet flow at a model nozzle of a Pelton turbine. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland.

    Google Scholar 

  • Parkinson, E., Neury, C., Garcin, H., & Weiss, T. (2005). Unsteady analysis of a Pelton runner with flow and mechanical simulations. Hydro 2005, Villach, Austria.

    Google Scholar 

  • Perrig, A., Avellan, F., Kueny, J., Farhat, M., & Parkinson, E. (2006). Flow in a Pelton turbine bucket: Numerical and experimental investigations. Journal of Fluids Engineering, Transactions of the ASME, 128, 350–358.

    Article  Google Scholar 

  • Pfleiderer, C., & Petermann, H. (1986). Strömungsmaschinen (5. Auflage). Springer.

    Google Scholar 

  • Quantz, L., & Meerwarth, K. (1963). Wasserkraftmaschinen (11. Auflage). Springer.

    Google Scholar 

  • Sigloch, H. (2006). Strömungsmaschinen. (3. Auflage). Hanser Verlag.

    Google Scholar 

  • Staubli, T., & Hauser, H. (2004). Flow visualization – a diagnosis tool for Pelton turbines. Fifth IGHEM Conference, Lucerne, Switzerland.

    Google Scholar 

  • Taygun, F. (1946). Untersuchungen über den Einfluss der Schaufelzahl auf die Wirkungsweise eines Freistrahlrades. Diss., Eidgenössische Technische Hochschule in Zürich.

    Google Scholar 

  • Thomann, R. (1931). Die Wasserturbinen und Turbinenpumpen, Teil 2. Stuttgart: Wittwer-Verlag.

    Google Scholar 

  • Winkler, K., & Dekumbis, R. (2010). Recent Developments in combating Hydro-abrasive erosion. 16th International Seminar on Hydropower Plants (pp. 109-119), Vienna, Austria.

    Google Scholar 

  • Zhang, Zh. (2005). Dual-Measurement-Method and its extension for accurately resolving the secondary flows in LDA applications. Flow Measurement and Instrumentation, 16, 57–62.

    Google Scholar 

  • Zhang, Zh. (2006). Improvement of scale-up method for efficiency conversion of Pelton turbines. 14th International Seminar on Hydropower Plants (pp. 63–68), Vienna, Austria.

    Google Scholar 

  • Zhang, Zh. (2007a). Flow interactions in Pelton turbines and the hydraulic efficiency of the turbine system. Proceedings of the IMechE Vol. 221, Part A: Journal of Power and Energy, pp. 343–357.

    Google Scholar 

  • Zhang, Zh. (2007b). Flow friction theorem of Pelton turbine hydraulics. Proceedings of the IMechE Vol. 221, Part A: Journal of Power and Energy, pp. 1173–1180.

    Google Scholar 

  • Zhang, Zh. (2009a). Inlet flow condition and the jet impact work in a Pelton turbine. Proceedings of the IMechE Vol. 223, Part A: Journal of Power and Energy, pp. 589–596.

    Google Scholar 

  • Zhang, Zh. (2009b). Analytical method for frictional flows in a Pelton turbine. Proceedings of the IMechE Vol. 223, Part A: Journal of Power and Energy, pp. 597–608.

    Google Scholar 

  • Zhang, Zh. (2009c). Flow dynamics of the free surface flow in the rotating buckets of a Pelton turbine. Proceedings of the IMechE Vol. 223, Part A: Journal of Power and Energy, pp. 609–623.

    Google Scholar 

  • Zhang, Zh. (2009d). Freistrahlturbinen, Hydromechanik und Auslegung. Berlin: Springer.

    Google Scholar 

  • Zhang, Zh., Bissel, C., & Parkinson, E. (2003). LDA-Anwendung zu Freistrahlmessungen bei einem Pelton-Turbine-Modell mit der Fallhöhe von 90 Metern. 11. GALA-Tagung, Lasermethoden in der Strömungsmesstechnik, Braunschweig, Deutschland, Seite 13.1–13.6.

    Google Scholar 

  • Zhang, Zh., & Casey, M. (2007). Experimental studies of the jet of a Pelton turbine. Proceeding of the IMechE Vol. 221, Part A: Journal of Power and Energy, pp. 1181–1192.

    Google Scholar 

  • Zhang, Zh., Eisele, K., & Geppert, L. (2000a). Untersuchungen am Freistrahl aus einer Modell-düse von Pelton-Turbinen mittels LDA. 8. GALA-Tagung, Lasermethoden in der Strömungsmesstechnik, Freising/München, Deutschland, Seite 15.1–15.6.

    Google Scholar 

  • Zhang, Zh., Muggli, F., Parkinson, E., & Schärer, C. (2000b). Experimental investigation of a low head jet flow at a model nozzle of a Pelton turbine. 11th International Seminar on Hydropower Plants (pp. 181–188), Vienna, Austria.

    Google Scholar 

  • Zhang, Zh., & Müller, J. (2005) On the flow interchanges between the jet and the bucket of Pelton turbines. Hydro 2005, Villach, Austria.

    Google Scholar 

  • Zhang, Zh., & Müller, J. (2006). The effect of flow friction in the rotating bucket of Pelton turbine on the hydraulic efficiency. Hydro 2006, Porto Carras, Greece.

    Google Scholar 

  • Zhang, Zh., & Müller, J. (2007). Efficiency and runaway characteristics of a Pelton turbine. Hydro 2007, Granada, Spain.

    Google Scholar 

  • Zoppé, B., Pellone, C., Maitre, T., & Leroy, P. (2006). Flow analysis inside a Pelton turbine bucket. Journal of Turbomachinery, Transactions of the ASME, 128, 500–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Z. (2016). Introduction. In: Pelton Turbines. Springer, Cham. https://doi.org/10.1007/978-3-319-31909-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31909-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31908-7

  • Online ISBN: 978-3-319-31909-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics