Skip to main content

High Frequency Dissipative Integration Schemes for Linear and Nonlinear Elastodynamics

  • Chapter
  • First Online:
Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 565))

Abstract

Time integration schemes with controllable, artificial, high frequency dissipation are extremely common in practical engineering analyses for integrating in time initial boundary value problems previously discretized in space with finite elements or similar techniques. In this chapter, we describe the structure of the most commonly employed integration schemes of this type and focus in their numerical analysis for linear and nonlinear problems. These include spectral, energy, and backward error analyses. For the nonlinear case, additionally, we study the preservation of conservation laws and the approximation of relative equilibria. The chapter should provide a general overview of dissipative methods, their issues, and the tools available for their formulation and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armero, F., & Petocz, E. (1999). A new dissipative time-stepping algorithm for frictional contact problems: Formulation and analysis. Computer Methods in Applied Mechanics and Engineering, 179, 151–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Armero, F., & Romero, I. (2003). Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear cosserat rods. Computational Mechanics, 31, 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Armero, F., & Romero, I. (2001a). On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: Low order methods for two model problems and nonlinear elastodynamics. Computer Methods in Applied Mechanics and Engineering, 190, 2603–2649.

    Article  MathSciNet  MATH  Google Scholar 

  • Armero, F., & Romero, I. (2001b). On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: Second order methods. Computer Methods in Applied Mechanics and Engineering, 190, 6783–6824.

    Google Scholar 

  • Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Bathe, K. J. (2007). Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme. Computers and Structures, 85(7–8), 437–445.

    Article  MathSciNet  Google Scholar 

  • Bathe, K. J., & Wilson, E. L. (1973). Stability and accuracy analysis of direct integration methods. Earthquake Engineering and Structural Dynamics, 1(1), 283–291.

    Google Scholar 

  • Bauchau, O. A., & Joo, T. (1999). Computational schemes for non-linear elasto-dynamics. International Journal for Numerical Methods in Engineering, 45(6), 693–719.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauchau, O. A., & Theron, N. J. (1996). Energy decaying scheme for non-linear beam models. Computer Methods in Applied Mechanics and Engineering, 134(1–2), 37–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauchau, O. A., Damilano, G., & Theron, N. J. (1995). Numerical integration of non-linear elastic multi-body systems. International Journal for Numerical Methods in Engineering, 38(16), 2727–2751.

    Article  MathSciNet  MATH  Google Scholar 

  • Bazzi, G., & Anderheggen, E. (1982). The \(\rho \)-family of algorithms for time-step integration with improved numerical dissipation. Earthquake Engineering and Structural Dynamics, 10, 537–550.

    Article  Google Scholar 

  • Belytschko, T. (1983). An overview of semidiscretization and time integration procedures. Computational Methods for Transient Analysis, 67–155.

    Google Scholar 

  • Belytschko, T., & Schoeberle, D. F. (1975). On the unconditional stability of an implicit algorithm for nonlinear structural dynamics. Journal of Applied Mechanics, 42, 865–869.

    Article  Google Scholar 

  • Betsch, P., & Steinmann, P. (2001). Conservation properties of a time FE method. Part II: Time stepping schemes for non-linear elastodynamics. International Journal for Numerical Methods in Engineering, 50, 1931–1955.

    Google Scholar 

  • Bottasso, C. L., & Borri, M. (1997). Energy preserving/decaying schemes for non-linear beam dynamics using the helicoidal approximation. Computer Methods in Applied Mechanics and Engineering, 143, 393–415.

    Google Scholar 

  • Chung, J., & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. Journal of Applied Mechanics, 60, 371–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Erlicher, S., Bonaventura, L., & Bursi, O. S. (2002). The analysis of the generalized-\(\alpha \) method for non-linear dynamic problems. Computational Mechanics, 28, 83–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Geradin, M. (1974). A classification and discussion of integration operators for transient structural response. In 12th Aerospace Sciences Meeting. Washington, D.C.

    Google Scholar 

  • Gonzalez, O. (2000). Exact energy-momentum conserving algorithms for general models in nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 190, 1763–1783.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M. (1981). An introduction to continuum mechanics. Academic Press.

    Google Scholar 

  • Hairer, E. (1994). Backward analysis of numerical integrators and symplectic methods. Annals of Numerical Mathematics, 1, 107–132.

    MathSciNet  MATH  Google Scholar 

  • Hairer, E. (1999). Backward error analysis for multistep methods. Numerische Mathematik, 84(2), 199–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer, E., & Wanner, G. (1991). Solving ordinary differential equations II. Stiff and differential-algebraic problems (1st ed., Vol. 14). Berlin: Springer.

    Google Scholar 

  • Hilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5, 283–292.

    Article  Google Scholar 

  • Hughes, T. J. R. (1976). Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics. Computers and Structures, 6, 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T. J. R. (1983). Analysis of transient algorithms with particular reference to stability behavior. In T. Belytschko & T. J. R. Hughes (Eds.), Computational methods for transient analysis, (pp. 67–155). Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Hughes, T. J. R. (1987). The finite element method. Englewood Cliffs, New Jersey: Prentice-Hall Inc.

    MATH  Google Scholar 

  • Kuhl, D., & Crisfield, M. A. (1999). Energy-conserving and decaying algorithms in non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 45(5), 569–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhl, D., & Ramm, E. (1996). Constraint energy momentum algorithm and its application to nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering, 136, 293–315.

    Article  MATH  Google Scholar 

  • Kuhl, D., & Ramm, E. (1999). Generalized Energy-Momentum method for non-linear adaptive shell dynamics. Computer Methods in Applied Mechanics and Engineering, 178, 343–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Leimkuhler, B., & Reich, S. (2004). Simulating Hamiltonian dynamics. Cambridge University Press.

    Google Scholar 

  • Marsden, J. E., & Hughes, T. J. R. (1983). Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Marsden, J. E., & Ratiu, T. S. (1994). Introduction to Mechanics and Symmetry (1st ed.). New York: Springer.

    Google Scholar 

  • Modak, S., & Sotelino, E. D. (2002, July). The generalized method for structural dynamics applications. Advances in Engineering Software, 33(7–10), 565–575.

    Google Scholar 

  • Newmark, N. M. (1956). A method of computation for structural dynamics. Journal of the Engineering Mechanics division. ASCE, 85, 67–94.

    Google Scholar 

  • Romero, I. (2002). On the stability and convergence of fully discrete solutions in linear elastodynamics. Computer Methods in Applied Mechanics and Engineering, 191, 3857–3882.

    Article  MathSciNet  MATH  Google Scholar 

  • Romero, I. (2004). Stability analysis of linear multistep methods for classical elastodynamics. Computer Methods in Applied Mechanics and Engineering, 193, 2169–2189.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C., & Tarnow, N. (1992). The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Journal of Applied Mathematics and Physics (ZAMP), 43(5), 757–792.

    Google Scholar 

  • Simo, J. C., & Tarnow, N. (1994). A new energy and momentum conserving algorithm for the non-linear dynamics of shells. International Journal for Numerical Methods in Engineering, 37(15), 2527–2549.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C., & Wong, K. (1991). Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering, 31, 19–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C., Marsden, J. E., & Krishnaprasad, P. S. (1988). The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates. Archive for Rational Mechanics and Analysis, 104(2), 125–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C., Posbergh, T. A., & Marsden, J. E. (1991). Stability of relative equilibria. II. Application to nonlinear elasticity. Archive for Rational Mechanics and Analysis, 115(1), 61–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Warming, R. F., & Hyett, B. J. (1974). The modified equation approach to stability and accuracy analysis of finite difference methods. Journal of Computational Physics, 14, 159–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, E. L. (1968). A computer program for the dynamic stress analysis of underground structures. Technical Report EERC Report No. 68-1, University of California, Berkeley.

    Google Scholar 

  • Wood, W. L. (1990). Practical time-stepping algorithms. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Wood, W. L., Bossak, M., & Zienkiewicz, O. C. (1981). An alpha modification of Newmark’s method. International Journal for Numerical Methods in Engineering, 15, 1562–1566.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, X., & Tamma, K. K. (2004). Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering, 59, 597–668.

    Article  MathSciNet  MATH  Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (2005). The finite element method for solid and structural mechanics (6th ed.). Oxford, England: Butterworth Heinemann.

    Google Scholar 

  • Zienkiewicz, O. C., Wood, W. L., Hine, N. W., & Taylor, R. L. (1984). A unified set of single step algorithms. Part 1: General formulation and applications. International Journal for Numerical Methods in Engineering, 20, 1529–1552.

    Google Scholar 

Download references

Acknowledgments

Funding for this work has been provided by the Spanish Ministry of Science and Competitiveness under Grant DPI2012-36429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Romero, I. (2016). High Frequency Dissipative Integration Schemes for Linear and Nonlinear Elastodynamics. In: Betsch, P. (eds) Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics. CISM International Centre for Mechanical Sciences, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-31879-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31879-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31877-6

  • Online ISBN: 978-3-319-31879-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics