Calix[6]azacryptand-Based Receptors

  • Gaël De Leener
  • Steven Moerkerke
  • Roy Lavendomme
  • Olivia Reinaud
  • Ivan Jabin
Chapter

Abstract

The calix[6]azacryptands present a grid-like nitrogenous cap that closes the small rim of a calix[6]arene core and rigidifies it into a cone open to the solvent, at the large rim. These macrocycles behaves as heteroditopic receptors, displaying remarkable binding properties toward either neutral guests, zwitterions, anions, contact ion-pairs or metal ions. Despite this versatility, they are highly selective within each class of guests. Furthermore, their channel-like calixarene cavity controls the access to the polyaza recognition site and they are efficient in competitive media (polar and/or coordinating solvents). Their flexibility allows induced-fit processes and their hosting properties can be allosterically controlled by the addition of acids and bases. All these recognition properties are highly reminiscent of the binding processes operating in natural systems.

Keywords

Calixarenes Host-guest systems Molecular receptors Cryptands Biomimicry 

References

  1. 1.
    (a) Lehn, J.-M. Supramolecular Chemistry. Wiley-VCH: Weinheim, 1995; (b) Steed, J. W.; Turner, D. R.; Wallace, K. J. Core concepts in supramolecular chemistry and nanochemistry. John Wiley: Chichester, United Kingdom; Hoboken, NJ, 2007; (c) Hartley, J. H.; James, T. D.; Ward, C. J. J. Chem. Soc., Perkin Trans. 1 2000, 3155–3184.Google Scholar
  2. 2.
    (a) Valeur, B.; Brochon, J.-C. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences. Springer: Berlin, 2001; (b) Nguyen, B. T.; Anslyn, E. V. Coord. Chem. Rev. 2006, 250, 3118–3127; (c) Schneider, H.-J. Applications of Supramolecular Chemistry. CRC Press, Taylor & Francis group: Boca Raton, 2012; Vol. 3; (d) Lehn, J.-M. Science 2002, 295, 2400–2403.Google Scholar
  3. 3.
    Dugas, H. Bioorganic Chemistry: A Chemical Approach to Enzyme Action. 3rd ed.; Springer-Verlag: New-York, 1996.CrossRefGoogle Scholar
  4. 4.
    (a) Coquière, D.; Le Gac, S.; Darbost, U.; Sénèque, O.; Jabin, I.; Reinaud, O. Org. Biomol. Chem. 2009, 7, 2485–2500; (b) Perraud, O.; Robert, V.; Gornitzka, H.; Martinez, A.; Dutasta, J.-P. Angew. Chem. Int. Ed. 2012, 51, 504–508; (c) Daze, K. D.; Ma, M. C. F.; Pineux, F.; Hof, F. Org. Lett. 2012, 14, 1512–1515; (d) Le Poul, N.; Le Mest, Y.; Jabin, I.; Reinaud, O. Acc. Chem. Res. 2015, 48, 2097–2106; (e) Gramage-Doria, R.; Armspach, D.; Matt, D. Coord. Chem. Rev. 2013, 257, 776–816; (f) Rebilly, J.-N.; Colasson, B.; Bistri, O.; Over, D.; Reinaud, O. Chem. Soc. Rev. 2015, 44, 467–489; (g) Bistri, O.; Reinaud, O. Org. Biomol. Chem. 2015, 13, 2849–2865; (h) Zelder, F. H.; Salvio, R.; Rebek Jr, J. Chem. Commun. 2006, 1280–1282; (i) Ma, Y.; Xue, M.; Zhang, Z.; Chi, X.; Huang, F. Tetrahedron 2013, 69, 4532–4535; (j) Cuevas, F.; Di Stefano, S.; Magrans, J. O.; Prados, P.; Mandolini, L.; de Mendoza, J. Chem. Eur. J. 2000, 6, 3228–3234; (k) Brunetti, E.; Inthasot, A.; Keymeulen, F.; Reinaud, O.; Jabin, I.; Bartik, K. Org. Biomol. Chem. 2015, 13, 2931–2938; (l) Kunsági-Máté, S.; Szabó, K.; Bitter, I.; Nagy, G.; Kollár, L. J. Phys. Chem. A 2005, 109, 5237–5242; (m) Corbellini, F.; Knegtel, R. M. A.; Grootenhuis, P. D. J.; Crego-Calama, M.; Reinhoudt, D. N. Chem. Eur. J. 2005, 11, 298–307.Google Scholar
  5. 5.
    (a) Gutsche, C. D. Calixarenes revisited. The Royal Society of Chemistry: Cambridge, 1998; (b) Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J. In Calixarenes 2001, Kluwer Academic Publishers (Springer): Dordrecht, The Netherlands, 2001.Google Scholar
  6. 6.
    (a) Lavendomme, R.; Zahim, S.; De Leener, G.; Inthasot, A.; Mattiuzzi, A.; Luhmer, M.; Reinaud, O.; Jabin, I. Asian J. Org. Chem. 2015, 4, 710–722; (b) Martino, M.; Neri, P. Mini-Rev. Org. Chem. 2004, 1, 219–231; (c) Gutsche, C. D. Calixarenes: An Introduction, 2nd ed.; The Royal Society of Chemistry: Cambridge, United Kingdom, 2008; (d) Sliwa, W.; Deska, M. Arkivoc 2011, 1, 496–551.Google Scholar
  7. 7.
    Szejtli, J. Chem. Rev. 1998, 98, 1743–1754.CrossRefGoogle Scholar
  8. 8.
    Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem. Int. Ed. 2005, 44, 4844–4870.CrossRefGoogle Scholar
  9. 9.
    (a) Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron 1996, 52, 2663–2704; (b) Jain, V. K.; Kanaiya, P. H. Russ. Chem. Rev. 2011, 80, 75–102.Google Scholar
  10. 10.
    (a) Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. J. Org. Chem. 2007, 72, 7497–7503; (b) Bu, J.-H.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Org. Lett. 2004, 6, 3301–3303.Google Scholar
  11. 11.
    (a) Redshaw, C. Coord. Chem. Rev. 2003, 244, 45–70; (b) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713–1734.Google Scholar
  12. 12.
    Chen, Y.; Gong, S. J. Inclusion Phenom. Macrocyclic Chem. 2003, 45, 165–184.CrossRefGoogle Scholar
  13. 13.
    (a) Le Gac, S.; Marrot, J.; Reinaud, O.; Jabin, I. Angew. Chem. Int. Ed. 2006, 45, 3123–3126; (b) Arduini, A.; Ferdani, R.; Pochini, A.; Secchi, A.; Ugozzoli, F.; Sheldrick, G. M.; Prados, P.; González, J. J.; de Mendoza, J. J. Supramol. Chem. 2002, 2, 85–88; (c) González, J. J.; Ferdani, R.; Albertini, E.; Blasco, J. M.; Arduini, A.; Pochini, A.; Prados, P.; de Mendoza, J. Chem. Eur. J. 2000, 6, 73–80; (d) de Mendoza, J. Chem. Eur. J. 1998, 4, 1373–1377.Google Scholar
  14. 14.
    (a) Hamon, M.; Ménand, M.; Le Gac, S. p.; Luhmer, M.; Dalla, V.; Jabin, I. J. Org. Chem. 2008, 73, 7067–7071; (b) Sénèque, O.; Rager, M.-N.; Giorgi, M.; Reinaud, O. J. Am. Chem. Soc. 2000, 122, 6183–6189.Google Scholar
  15. 15.
    Spek, A. Acta Cryst. D 2009, 65, 148–155.CrossRefGoogle Scholar
  16. 16.
    Jabin, I.; Reinaud, O. J. Org. Chem. 2003, 68, 3416–3419.CrossRefGoogle Scholar
  17. 17.
    Garrier, E.; Gac, S.; Jabin, I. Tetrahedron: Asymmetry 2005, 16, 3767–3771.CrossRefGoogle Scholar
  18. 18.
    Zeng, X.; Coquière, D.; Alenda, A.; Garrier, E.; Prangé, T.; Li, Y.; Reinaud, O.; Jabin, I. Chem. Eur. J. 2006, 12, 6393–6402.CrossRefGoogle Scholar
  19. 19.
    Darbost, U.; Giorgi, M.; Reinaud, O.; Jabin, I. J. Org. Chem. 2004, 69, 4879–4884.CrossRefGoogle Scholar
  20. 20.
    Zeng, X.; Hucher, N.; Reinaud, O.; Jabin, I. J. Org. Chem. 2004, 69, 6886–6889.CrossRefGoogle Scholar
  21. 21.
    Ménand, M.; Jabin, I. Org. Lett. 2009, 11, 673–676.CrossRefGoogle Scholar
  22. 22.
    Cornut, D.; Marrot, J.; Wouters, J.; Jabin, I. Org. Biomol. Chem. 2011, 9, 6373–6384.CrossRefGoogle Scholar
  23. 23.
    Cornut, D.; Moerkerke, S.; Wouters, J.; Bruylants, G.; Jabin, I. Chem. Asian J. 2015, 10, 440–446.CrossRefGoogle Scholar
  24. 24.
    Lascaux, A.; Le Gac, S.; Wouters, J.; Luhmer, M.; Jabin, I. Org. Biomol. Chem. 2010, 8, 4607–4616.CrossRefGoogle Scholar
  25. 25.
    Moerkerke, S.; Ménand, M.; Jabin, I. Chem. Eur. J. 2010, 16, 11712–11719.CrossRefGoogle Scholar
  26. 26.
    Moerkerke, S.; Le Gac, S.; Topić, F.; Rissanen, K.; Jabin, I. Eur. J. Org. Chem. 2013, 5315–5322.Google Scholar
  27. 27.
    (a) Casnati, A.; Minari, P.; Pochini, A.; Ungaro, R. J. Chem. Soc., Chem. Commun. 1991, 1413–1414; (b) Janssen, R. G.; Verboom, W.; Reinhoudt, D. N.; Casnati, A.; Freriks, M.; Pochini, A.; Ugozzoli, F.; Ungaro, R.; Nieto, P. M.; Carramolino, M.; Cuevas, F.; Prados, P.; de Mendoza, J. Synthesis 1993, 380–386.Google Scholar
  28. 28.
    Danjou, P.-E.; De Leener, G.; Cornut, D.; Moerkerke, S.; Mameri, S.; Lascaux, A.; Wouters, J.; Brugnara, A.; Colasson, B.; Reinaud, O.; Jabin, I. J. Org. Chem. 2015, 80, 5084–5091.CrossRefGoogle Scholar
  29. 29.
    Lejeune, M.; Picron, J.-F.; Mattiuzzi, A.; Lascaux, A.; De Cesco, S.; Brugnara, A.; Thiabaud, G.; Darbost, U.; Coquière, D.; Colasson, B.; Reinaud, O.; Jabin, I. J. Org. Chem. 2012, 77, 3838–3845.CrossRefGoogle Scholar
  30. 30.
    Thiabaud, G.; Brugnara, A.; Carboni, M.; Le Poul, N.; Colasson, B.; Le Mest, Y.; Reinaud, O. Org. Lett. 2012, 14, 2500–2503.CrossRefGoogle Scholar
  31. 31.
    Le Gac, S.; Ménand, M.; Jabin, I. Org. Lett. 2008, 10, 5195–5198.CrossRefGoogle Scholar
  32. 32.
    Lascaux, A.; De Leener, G.; Fusaro, L.; Topic, F.; Rissanen, K.; Luhmer, M.; Jabin, I. Org. Biomol. Chem. 2016, 14, 738–746.CrossRefGoogle Scholar
  33. 33.
    (a) Themed issue on anions: Supramolecular Chemistry of Anionic Species, Chem. Soc. Rev. 2010, 39, 3597–4003; (b) Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A. Chem. Rev. 2015, 115, 8038–8155.Google Scholar
  34. 34.
    Beer, P. D. Acc. Chem. Res. 1998, 31, 71–80.CrossRefGoogle Scholar
  35. 35.
    Matthews, S. E.; Beer, P. D. Calixarene-Based Anion Receptors. In Calixarenes 2001, Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Eds. Kluwer Academic Publishers (Springer): Dordrecht, The Netherlands, 2001; pp 421–439.Google Scholar
  36. 36.
    (a) Scheerder, J.; Engbersen, J. F. J.; Casnati, A.; Ungaro, R.; Reinhoudt, D. N. J. Org. Chem. 1995, 60, 6448–6454; (b) Zhang, S.; Palkar, A.; Echegoyen, L. Langmuir 2006, 22, 10732–10738.Google Scholar
  37. 37.
    Ménand, M.; Jabin, I. Chem. Eur. J. 2010, 16, 2159–2169.CrossRefGoogle Scholar
  38. 38.
    Svec, J.; Necas, M.; Sindelar, V. Angew. Chem. Int. Ed. 2010, 49, 2378–2381.CrossRefGoogle Scholar
  39. 39.
    Bordwell, F. G.; Algrim, D. J.; Harrelson, J. A. J. Am. Chem. Soc. 1988, 110, 5903–5904.CrossRefGoogle Scholar
  40. 40.
    Dannecker, W.; Kopf, J.; Rust, H. Cryst. Struct. Commun. 1979, 8, 429–432.Google Scholar
  41. 41.
    (a) Gaeta, C.; Troisi, F.; Neri, P. Org. Lett. 2010, 12, 2092–2095; (b) Talotta, C.; De Simone, N. A.; Gaeta, C.; Neri, P. Org. Lett. 2015, 17, 1006–1009.Google Scholar
  42. 42.
    Darbost, U.; Rager, M.-N.; Petit, S.; Jabin, I.; Reinaud, O. J. Am. Chem. Soc. 2005, 127, 8517–8525.CrossRefGoogle Scholar
  43. 43.
    For recent reviews on ion-pair receptors, see: (a) Kim, S. K.; Sessler, J. L. Chem. Soc. Rev. 2010, 39, 3784–3809; (b) McConnell, A. J.; Beer, P. D. Angew. Chem. Int. Ed. 2012, 51, 5052–5061.Google Scholar
  44. 44.
    Selected references: (a) Arduini, A.; Ferdani, R.; Pochini, A.; Secchi, A.; Ugozzoli, F. Angew. Chem. Int. Ed. 2000, 39, 3453–3456; (b) Credi, A.; Dumas, S.; Silvi, S.; Venturi, M.; Arduini, A.; Pochini, A.; Secchi, A. J. Org. Chem. 2004, 69, 5881–5887; (c) Boccia, A.; D'Orazi, F.; Carabelli, E.; Bussolati, R.; Arduini, A.; Secchi, A.; Marrani, A. G.; Zanoni, R. Chem. Eur. J. 2013, 19, 7999–8006; (d) Arduini, A.; Bussolati, R.; Credi, A.; Secchi, A.; Silvi, S.; Semeraro, M.; Venturi, M. J. Am. Chem. Soc. 2013, 135, 9924–9930.Google Scholar
  45. 45.
    (a) Davies, C. W. Ion Association. Butterworths: London, 1962; (b) Kubik, S. J. Am. Chem. Soc. 1999, 121, 5846–5855; (c) Mahoney, J. M.; Davis, J. P.; Beatty, A. M.; Smith, B. D. J. Org. Chem. 2003, 68, 9819–9820; (d) Lankshear, M. D.; Dudley, I. M.; Chan, K.-M.; Cowley, A. R.; Santos, S. M.; Felix, V.; Beer, P. D. Chem. Eur. J. 2008, 14, 2248–2263; (e) Atwood, J. L.; Szumna, A. Chem. Commun. 2003, 940–941.Google Scholar
  46. 46.
    Hossain, M. A.; Morehouse, P.; Powell, D.; Bowman-James, K. Inorg. Chem. 2005, 44, 2143–2149.CrossRefGoogle Scholar
  47. 47.
    Hossain, M. A.; Llinares, J. M.; Mason, S.; Morehouse, P.; Powell, D.; Bowman-James, K. Angew. Chem. Int. Ed. 2002, 41, 2335–2338.CrossRefGoogle Scholar
  48. 48.
    (a) María, D. S.; Farrán, M. Á.; García, M. Á.; Pinilla, E.; Torres, M. R.; Elguero, J.; Claramunt, R. M. J. Org. Chem. 2011, 76, 6780–6788; (b) Herranz, F.; Santa María, M. D.; Claramunt, R. M. J. Org. Chem. 2006, 71, 2944–2951; (c) Hegde, V.; Hung, C. Y.; Madhukar, P.; Cunningham, R.; Hopfner, T.; Thummel, R. P. J. Am. Chem. Soc. 1993, 115, 872–878.Google Scholar
  49. 49.
    Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. P. Natl. Acad. Sci. U.S.A. 1993, 90, 5076–5080.CrossRefGoogle Scholar
  50. 50.
    Tzianabos, A. O.; Finberg, R. W.; Wang, Y.; Chan, M.; Onderdonk, A. B.; Jennings, H. J.; Kasper, D. L. J. Biol. Chem. 2000, 275, 6733–6740.CrossRefGoogle Scholar
  51. 51.
    Peden, A. S.; Mac, P.; Fei, Y.-J.; Castro, C.; Jiang, G.; Murfitt, K. J.; Miska, E. A.; Griffin, J. L.; Ganapathy, V.; Jorgensen, E. M. Nat. Neurosci. 2013, 16, 1794–1801.CrossRefGoogle Scholar
  52. 52.
    Hanson, A. D.; Rathinasabapathi, B.; Rivoal, J.; Burnet, M.; Dillon, M. O.; Gage, D. A. P. Natl. Acad. Sci. U.S.A. 1994, 91, 306–310.CrossRefGoogle Scholar
  53. 53.
    Cochrane, J. R.; Schmitt, A.; Wille, U.; Hutton, C. A. Chem. Commun. 2013, 49, 8504–8506.CrossRefGoogle Scholar
  54. 54.
    Moerkerke, S.; Wouters, J.; Jabin, I. J. Org. Chem. 2015, 80, 8720–8726.CrossRefGoogle Scholar
  55. 55.
    Izzet, G.; Douziech, B.; Prange, T.; Tomas, A.; Jabin, I.; Le Mest, Y.; Reinaud, O. P. Natl. Acad. Sci. U.S.A. 2005, 102, 6831–6.CrossRefGoogle Scholar
  56. 56.
    (a) Izzet, G.; Zeng, X.; Over, D.; Douziech, B.; Zeitouny, J.; Giorgi, M.; Jabin, I.; Mest, Y. L.; Reinaud, O. Inorg. Chem. 2007, 46, 375–377; (b) Over, D.; de la Lande, A.; Zeng, X.; Parisel, O.; Reinaud, O. Inorg. Chem. 2009, 48, 4317–4330.Google Scholar
  57. 57.
    Izzet, G.; Zeng, X.; Akdas, H.; Marrot, J.; Reinaud, O. Chem. Commun. 2007, 810–812.Google Scholar
  58. 58.
    Izzet, G.; Rager, M.-N.; Reinaud, O. Dalton Trans. 2007, 771–780.Google Scholar
  59. 59.
    Le Poul, N.; Douziech, B.; Zeitouny, J.; Thiabaud, G.; Colas, H.; Conan, F.; Cosquer, N.; Jabin, I.; Lagrost, C.; Hapiot, P.; Reinaud, O.; Le Mest, Y. J. Am. Chem. Soc. 2009, 131, 17800–17807.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gaël De Leener
    • 1
    • 2
  • Steven Moerkerke
    • 2
  • Roy Lavendomme
    • 2
  • Olivia Reinaud
    • 1
  • Ivan Jabin
    • 2
  1. 1.Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques (CNRS UMR 8601)Université Paris DescartesParisFrance
  2. 2.Laboratoire de Chimie OrganiqueUniversité libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations