Skip to main content

Calixarenes and Nanoparticles

  • Chapter
  • First Online:
Calixarenes and Beyond

Abstract

The anchoring of functional organic coatings on the surface of inorganic nanoparticles has been and still is the topic of intense research activity for the development of novel nanomaterials. Within this context metal nanoparticles decorated with synthetic receptors have been quite extensively employed to further expand the scope of supramolecular chemistry. In this chapter we offer a general survey on the use of calixarene derivatives as functional components for the preparation of gold and silver nanoparticles. A particular emphasis is placed on the exploitation of the chemical and structural information stored in properly functionalized calixarene macrocycles as control element during the synthesis to define the nanoparticles nuclearity and the recognition capability of the macrocycle for the manufacturing of nanodevices with potential applications in sensing and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4769–4774.

    Article  CAS  Google Scholar 

  2. Love, J. C.; Estroff, L. a.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103–1169.

    Google Scholar 

  3. Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Acc. Chem. Res. 1999, 32, 397–406.

    Article  CAS  Google Scholar 

  4. Templeton, A. C.; Wuelfing, M. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27–36.

    Article  CAS  Google Scholar 

  5. Badia, A.; Lennox, R. B.; Reven, L. Acc. Chem. Res. 2000, 33, 475–481.

    Article  CAS  Google Scholar 

  6. Daniel, M.-C. C.; Astruc, D. Chem. Rev. 2004, 104, 293–346.

    Article  CAS  Google Scholar 

  7. Nanoparticles, 2nd ed.; Schmid, G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010.

    Google Scholar 

  8. Nanoparticles: Building Blocks for Nanotechnology; Rotello, V., Ed.; Nanostructure Science and Technology; Springer US: Boston, MA, 2004.

    Google Scholar 

  9. Brust, M.; Kiely, C. J. Monolayer Protected Clusters of Gold and Silver. In Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles; Caruso, F., Ed. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003, pp 96–119.

    Chapter  Google Scholar 

  10. Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2002, 124, 5019–5024.

    Article  CAS  Google Scholar 

  11. Steed, J. W.; Turner, D. R.; Wallace, K. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley & Sons, Ltd: Chichester (UK), 2007.

    Google Scholar 

  12. Montes-Garcia, V.; Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M. Chem. Eur. J. 2014, 20, 10874–10883.

    Article  CAS  Google Scholar 

  13. Descalzo, A. B.; Martínez-Máñez, R.; Sancenón, F.; Hoffmann, K.; Rurack, K. Angew. Chem. Int. Ed. 2006, 45, 5924–5948.

    Google Scholar 

  14. Shenhar, R.; Rotello, V. M. Acc. Chem. Res. 2003, 36, 549–561.

    Article  CAS  Google Scholar 

  15. Connolly, S.; Rao, S. N.; Rizza, R.; Zaccheroni, N.; Fitzmaurice, D. Coord. Chem. Rev. 1999, 185–186, 277–295.

    Google Scholar 

  16. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801–802.

    Google Scholar 

  17. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc., Chem. Commun. 1995, 1655–1656.

    Google Scholar 

  18. Liz-Marzán, L. M. Chem. Commun. 2013, 49, 16–18.

    Google Scholar 

  19. de Aberasturi, D. J.; Serrano-Montes, A. B.; Liz-Marzán, L. M. Adv. Opt. Mater. 2015, 3, 602–617.

    Article  Google Scholar 

  20. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Chem. Soc. Rev. 2008, 37, 898–911.

    Article  CAS  Google Scholar 

  21. Hou, W.; Cronin, S. B. Adv. Funct. Mater. 2013, 23, 1612–1619.

    Google Scholar 

  22. Kim, E. Y.; Kumar, D.; Khang, G.; Lim, D.-K. J. Mater. Chem. B 2015, 3, 8433–8444.

    Article  CAS  Google Scholar 

  23. Boisselier, E.; Astruc, D. Chem. Soc. Rev. 2009, 38, 1759–1782.

    Article  CAS  Google Scholar 

  24. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739–2779.

    Article  CAS  Google Scholar 

  25. Guo, R.; Song, Y.; Wang, G.; Murray, R. W. J. Am. Chem. Soc. 2005, 127, 2752–2757.

    Google Scholar 

  26. Woehrle, G. H.; Warner, M. G.; Hutchison, J. E. J. Phys. Chem. B 2002, 106, 9979–9981.

    Article  CAS  Google Scholar 

  27. Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1999, 121, 882–883.

    Google Scholar 

  28. Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 1997, 119, 12384–12385.

    Article  CAS  Google Scholar 

  29. Hostetler, M. J.; Green, S. J.; Stokes, J. J.; Murray, R. W. J. Am. Chem. Soc. 1996, 118, 4212–4213.

    Article  CAS  Google Scholar 

  30. Arduini, A.; Demuru, D.; Pochini, A.; Secchi, A. Chem. Commun. 2005, 645–647.

    Google Scholar 

  31. Arduini, A.; Brindani, E.; Giorgi, G.; Pochini, A.; Secchi, A. J. Org. Chem. 2002, 67, 6188–6194.

    Article  CAS  Google Scholar 

  32. Orda-Zgadzaj, M.; Wendel, V.; Fehlinger, M.; Ziemer, B.; Abraham, W. Eur. J. Org. Chem. 2001, 2001, 1549–1561.

    Article  Google Scholar 

  33. Pescatori, L.; Boccia, A.; Ciesa, F.; Rossi, F.; Grillo, V.; Arduini, A.; Pochini, A.; Zanoni, R.; Secchi, A. Chem. Eur. J. 2010, 16, 11089–11099.

    Google Scholar 

  34. Boccia, A.; Zanoni, R.; Arduini, A.; Pescatori, L.; Secchi, A. J. Nanosci. Nanotechnol. 2012, 12, 8851–8855.

    Article  CAS  Google Scholar 

  35. Hostetler, M. J.; Wingate, J. E.; Zhong, C. –J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W. Langmuir 1998, 14, 17–30.

    Google Scholar 

  36. Tshikhudo, T. R.; Demuru, D.; Wang, Z.; Brust, M.; Secchi, A.; Arduini, A.; Pochini, A. Angew. Chem. Int. Ed. 2005, 44, 2913–2916.

    Article  CAS  Google Scholar 

  37. Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

  38. Pescatori, L.; Arduini, A.; Pochini, A.; Secchi, A.; Massera, C.; Ugozzoli, F. Org. Biomol. Chem. 2009, 7, 3698–3708.

    Article  CAS  Google Scholar 

  39. Ciesa, F.; Plech, A.; Mattioli, C.; Pescatori, L.; Arduini, A.; Pochini, A.; Rossi, F.; Secchi, A. J. Phys. Chem. C 2010, 114, 13601–13607.

    Article  CAS  Google Scholar 

  40. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922–926.

    Google Scholar 

  41. Boccia, A.; D’Orazi, F.; Carabelli, E.; Bussolati, R.; Arduini, A.; Secchi, A.; Marrani, A. G.; Zanoni, R. Chem. Eur. J. 2013, 19, 7999–8006.

    Article  CAS  Google Scholar 

  42. Boccia, A.; Lanzilotto, V.; Zanoni, R.; Pescatori, L.; Arduini, A.; Secchi, A. Phys. Chem. Chem. Phys. 2011, 13, 4444–4451.

    Article  CAS  Google Scholar 

  43. Arduini, A.; Orlandini, G.; Secchi, A.; Credi, A.; Silvi, S.; Venturi, M. Calix-Based Molecular Machines and Devices. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2014.

    Google Scholar 

  44. Ross, M. B.; Mirkin, C. A.; Schatz, G. C. J. Phys. Chem. C 2016, 120, 816–830.

    Google Scholar 

  45. Patel, G.; Menon, S. Chem. Commun. 2009, 3563–3565.

    Google Scholar 

  46. Chen, Y.; Zhang, J.; Gao, Y.; Lee, J.; Chen, H.; Yin, Y. Biosens. Bioelectron. 2015, 72, 306–312.

    Article  CAS  Google Scholar 

  47. Maity, D.; Gupta, R.; Gunupuru, R.; Srivastava, D. N.; Paul, P. Sens. Actuators, B. 2014, 191, 757–764

    Article  CAS  Google Scholar 

  48. Maity, D.; Bhatt, M.; Paul, P. Microchim. Acta 2015, 182, 377–384.

    Article  CAS  Google Scholar 

  49. Frens, G. Nature 1973, 241, 20–22.

    CAS  Google Scholar 

  50. Ha, J.-M.; Solovyov, A.; Katz, A. Langmuir 2009, 25, 10548–10553.

    Google Scholar 

  51. Ha, J.-M.; Solovyov, A.; Katz, A. J. Phys. Chem. 2010, 114, 16060–16070.

    Google Scholar 

  52. de Silva, N.; Ha, J.-M.; Solovyov, A.; Nigra, M. M.; Ogino, I.; Yeh, S. W.; Durkin, K. A.; Katz, A. Nat. Chem. 2010, 2, 1062–1068.

    Article  Google Scholar 

  53. Ha, J.-M.; Solovyov, A.; Katz, A. Langmuir 2009, 25, 153–158.

    Google Scholar 

  54. Noguez, C. J. Phys. Chem. C 2007, 111, 3806–3819.

    Article  CAS  Google Scholar 

  55. Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.-S.; Chen, G. Drug Discov. Today 2015, 20, 595–601.

    Article  CAS  Google Scholar 

  56. Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. J. Nanomater. 2015, 2015, 1–12.

    Article  Google Scholar 

  57. Singh, R.; Shedbalkar, U. U.; Wadhwani, S. A.; Chopade, B. A. Appl. Microbiol. Biotechnol. 2015, 99, 4579–4593.

    Article  CAS  Google Scholar 

  58. Wiley, B.; Sun, Y.; Xia, Y. Acc. Chem. Res. 2007, 40, 1067–1076.

    Article  CAS  Google Scholar 

  59. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669–3712.

    Google Scholar 

  60. Hartlieb, K. J.; Saunders, M.; Raston, C. L. Chem. Commun. 2009, 3074–3076.

    Google Scholar 

  61. Hartlieb, K. J.; Martin, A. D.; Saunders, M.; Raston, C. L. New J. Chem. 2010, 34, 1834–1837.

    Google Scholar 

  62. Xiong, D.; Chen, M.; Li, H. Chem. Commun. 2008, 880–882.

    Google Scholar 

  63. Halas, N. J.; Lal, S.; Chang, W.-S. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913–3961.

    Google Scholar 

  64. Guerrini, L.; Garcia-Ramos, J. V; Domingo, C.; Sanchez-Cortes, S. Phys. Chem. Chem. Phys. 2009, 11, 1787–1793.

    Article  CAS  Google Scholar 

  65. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391–3395.

    Article  CAS  Google Scholar 

  66. Leopold, N.; Lendl, B. J. Phys. Chem. B 2003, 107, 5723–5727.

    Article  CAS  Google Scholar 

  67. Guerrini, L.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. Anal. Chem. 2009, 81, 953–960.

    Article  CAS  Google Scholar 

  68. Tauran, Y.; Brioude, A.; Shahgaldian, P.; Cumbo, A.; Kim, B.; Perret, F.; Coleman, A. W.; Montasser, I. Chem. Commun. 2012, 48, 9483–9485.

    Google Scholar 

  69. Vita, F.; Boccia, A.; Marrani, A. G.; Zanoni, R.; Rossi, F.; Arduini, A.; Secchi, A. Chem. Eur. J. 2015, 21, 15428–15438.

    Article  CAS  Google Scholar 

  70. Korgel, B. A.; Fitzmaurice, D. Adv. Mater. 1998, 10, 661–665.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Secchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vita, F., Arduini, A., Secchi, A. (2016). Calixarenes and Nanoparticles. In: Neri, P., Sessler, J., Wang, MX. (eds) Calixarenes and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-31867-7_35

Download citation

Publish with us

Policies and ethics