Skip to main content

Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis

  • Chapter
  • First Online:

Abstract

Resorcin[4]arenes (6) and pyrogallol[4]arenes (7) are concave molecules which were found to form large hexameric capsules in the solid state and in solution in the presence of specific guests. There after diffusion NMR have shown that 6, 7 and even octahydroxypyridine[4]arenes (8) form, spontaneously, hexameric capsules in organic solvents thus demonstrating that hexameric capsules are much more abundant than previously thought. In the following chapter after a brief introduction we describe the supramolecular structures of the hexamers of 6, 7 and 8. Then self-sorting and the guests affinity in the hexameric capsules of 6 and 7 are described after which the peculiar NMR spectra of encapsulated solvent molecules in the hexamers of 7 are describe in details. One of the main characteristics of molecular capsule it the ability of such system to isolate the guest from the bulk. Such systems can be regarded as nano-reactors where new chemistry and catalysis can emerge. Here we describe the recent example in which the hexameric capsules of 6 were used as nano-reactors and catalytic vessels. We end our essay by a short description of the recent developments in the field of metal organic nano-capsules (MONCs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (a) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, T. Chem. Commun. 2001, 509–518. (b) Inokuma, Y.; Kawano, M.; Fujita, M. Nat. Chem. 2011, 3, 349–358. (c) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418–3438. (d) Klosterman, J. K.; Yamaguchi, Y.; Fujita, M. Chem. Soc. Rev. 2009, 38, 1714–1725.

    Google Scholar 

  2. (a) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 349–358. (b) Raymond, K. N.; Brown, C. J. Top. Curr. Chem. 2012, 323, 1–18. (c) Pluth, M. D.; Bergman, R. G.; Raymond, K, N. Acc. Chem. Res. 2009, 42, 1650–1659. (d) Adriaenssens, L.; Ballester, P. Chem. Soc. Rev. 2013, 42, 3261–3277. (e) Breiner, B.; Clegg, J. K.; Nitschke, J. R. Chem. Sci. 2011, 2, 51–56.

    Google Scholar 

  3. (a) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr. Angew. Chem. Int. Ed. 2002, 41, 1488–1508. (b) Berryman, O. B.; Dube, H.; Rebek, J., Jr. Isr. J. Chem. 2011, 51, 700–709. (c) Rebek, J. Jr. Angew. Chem. Int. Ed. 2005, 44, 2068–2078. (c) Rebek, J. Jr. Acc. Chem. Res. 2009, 42, 1660–1668.

    Google Scholar 

  4. (a) Rebek, J. Jr. Chem. Commun. 2007, 2777–2789. (b) Schrӧder, T.; Sahu, S. N.; Anselmetti, D.; Mattay, J. Isr. J. Chem. 2011, 51, 725–742. (c) Kobayashi, K.; Yamanaka, M. Chem. Soc. Rev. 2015, 44, 449–466. (d) Gangemi, C. M. A.; Pappalardo, A.; Sfrazzetto, G. T. RSC Adv. 2015, 5, 51919–51933. (e) Gangemi, C. M. A.; Pappalardo, A.; Sfrazzetto, G. T. Current Org. Chem. 2015, 19, 2281–2308. (f) Rebek, J. Jr. Hydrogen-Bonded Capsules: Molecular Behavior in Small Spaces, World Scientific Publishing Co. Pte. Ltd. Singapore 2016.

    Google Scholar 

  5. Hӧgberg, A. G. S. J. Am. Chem. Soc. 1980, 102, 6046–6050.

    Article  Google Scholar 

  6. (a) Cram, D. J.; Karbach, S.; Kim, Y. H.; Baczynskyj, L.; Kallemeyn, G. W. J. Am. Chem. Soc. 1985, 107, 2575–2576. (b) Tanner, M. E.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1990, 112, 1659–1660. (c) Cram, D. J. Nature 1992, 356, 29–36.

    Google Scholar 

  7. (a) Jasat, A.; Scherman, J. C. Chem. Rev. 1999, 99, 931–967. (b) Warmuth, R. Acc. Chem. Res. 2001, 34, 95–105. (c) Rue, M. R.; Sun, J.; Warmuth, R. Isr. J. Chem. 2011, 51, 743–768.

    Google Scholar 

  8. (a) Bartik, K.; Luhmer, M.; Dutasta, J.–P.; Collet, A.; Reisse, J. J. Am. Chem. Soc. 1998, 120, 784–791. (b) Brotin, T.; Dutasta, J.-P. Chem. Rev. 2009, 109, 88–130.

    Google Scholar 

  9. (a) Schrӧder, L. Physica Medica, 2013, 29, 3–16. (b) Palaniappan, K. K.; Francis, M. B.; Pines, A.; Wemmer, D. E. Isr. J. Chem. 2014, 54, 104–112 (c) Taratula, O.; Dmochowski, I. J. Curr. Opin. Chem. Biol. 2010, 14, 97–104.

    Google Scholar 

  10. (a) Branda, N.; Wyler, R.; Rebek, J. Jr. Science 1994, 263, 1267–1268. (b) Wyler, R.; Mendoza, Rebek, J. Jr. Angew. Chem. Int. Ed. Engl. 1993, 32, 1699–1701.

    Google Scholar 

  11. (a) Shimizu, K. D.; Rebek, J. Jr. Proc. Natl. Acad. Sci. USA 1995, 92, 12403–12407. (b) Rebek, J. Jr. Chem. Commun. 2000, 637–643. (c) Mogck, O.; Böhmer, V.; Vogt, W. Tetrahedron 1996, 52, 8489–8496. (d) Mogck, O.; Paulus, E. F.; Böhmer, V.; Thondorf, I.; Vogt, W. Chem. Commun. 1996, 2533–2434.

    Google Scholar 

  12. (a) Heintz, T.; Rudkevich, D.; Rebek, J. Jr. Nature 1998, 394, 764–766. (b) Heintz, T.; Rudiveich, D. M.; Rebek, J. Jr. Angew. Chem. Int. Ed. Engl. 1999, 38, 1136–1139. (c) Rechavi, D.; Scarso, A.; Rebek, J. Jr. J. Am. Chem. Soc. 2004, 126, 7738–7739. (d) Asadi, A.; Ajami, D.; Rebek, J. Jr. J. Am. Chem. Soc. 2011, 133, 10682–10684.

    Google Scholar 

  13. (a) Murayama, K.; Aoki, K. Chem. Commun. 1998, 607–608. (b) Shivanyuk, A.; Rissanen, K.; Kolehmainen, E. Chem. Commun. 2000, 1107–1108.

    Google Scholar 

  14. MacGillivray, L. R.; Atwood, J. L. Nature 1997, 389, 469–472.

    Article  CAS  Google Scholar 

  15. Gerkensmeier, T.; Iwanek, W.; Agena, C.; Fröhlich, R.; Kotila, S.; Näther, C.; Mattay, J. Eur. J. Org. Chem. 1999, 2257–2262.

    Google Scholar 

  16. (a) Stejskal, O. E.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288–292. (b) Stilbs, P.J. Prog. NMR Spectrosc. 1987, 19, 1–45. (c) Pregosin, P. S.; Kumar, G. A.; Fernandez, I. Chem. Rev. 2015, 105, 2977–2998.

    Google Scholar 

  17. (a) Frish, L.; Matthews, S. E.; Bӧhmer, V.; Cohen, Y. J. Chem. Soc. Perkin Trans 2 1999, 669–671. (b) Frish, L.; Vysotsky, M. O.; Matthews, S. E.; Bӧhmer, V.; Cohen, Y. J. Chem. Soc. Perkin Trans 2 2002, 88–93. (c) Frish, L.; Vysotsky, M. O.; Bӧhmer, V.; Cohen, Y. Org. Biomol. Chem. 2003, 1, 2011–2014.

    Google Scholar 

  18. (a) Cohen, Y.; Avram, L.; Frish, L. Angew. Chem., Int. Ed. 2005, 44, 520–556. (b) Avram, L.; Cohen, Y. Chem. Soc. Rev. 2015, 44, 586–602. (c) Cohen, Y.; Avram, L.; Evan-Salem, T.; Slovak, S.; Shemesh, N.; Frish, L. in Analytical Methods in Supramolecular Chemistry, Ed. Schalley, C. A., 2012, Vol 1, pp. 197–285.

    Google Scholar 

  19. (a) Avram, L.; Cohen, Y. J. Am. Chem. Soc. 2002, 124, 15148–15149. (b) Avram, L.; Cohen, Y. Org. Lett. 2002, 4, 4365–4368.

    Google Scholar 

  20. (a) Avram, L.; Cohen, Y. Org. Lett. 2003, 5, 3329–3332. (b) Avram, L.; Cohen, Y. J. Am. Chem. Soc. 2004, 126, 11556–11563. (c) Avram, L.; Rebek, J. Jr.; Cohen, Y. Chem. Commun. 2011, 47, 5368–5373. (d) Palmer, L. C.; Rebek, J. Jr. Org. Lett. 2005, 7, 787–789.

    Google Scholar 

  21. (a) Ballester, P.; Gil-Ramirez, G. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10455–10459. (b) Ballester, P. Isr. J. Chem. 2011, 51, 710–724. (c) Galan, A.; Valderrey, V.; Ballester, P. Chem. Sci. 2015, 6, 6325–6333.

    Google Scholar 

  22. Ajami, D.; Rebek, J. Jr. Acc. Chem. Res. 2013, 46, 990–999.

    Article  CAS  Google Scholar 

  23. (a) Shivanyuk, A.; Scarso, A.; Rebek, J. Jr. Chem. Commun. 2003, 1230–1231. (b) Shivanyuk, A.; Rebek, J. Jr. Angew. Chem. Int. Ed. 2003, 42, 684–686. (c) Yamanka, M.; Rebek, J. Jr. Chem. Commun. 2004, 1690–1691.

    Google Scholar 

  24. (a) Atwood, J. L.; Barbour, L. J.; Jerga, A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4837–4841. (b) Atwood, J. L.; Barbour, L. J.; Jerga, A. Chem. Commun. 2001, 2376–2377.

    Google Scholar 

  25. (a) Shivanyuk, A.; Rebek, J. Jr. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 7662–7665. (b) Shivanyuk, A.; Rebek, J. Jr. Chem. Commun. 2001, 2424–2425.

    Google Scholar 

  26. (a) Avram, L.; Cohen, Y. Org. Lett. 2003, 5, 1099–1102. (b) Avram, L.; Cohen, Y. Org. Lett. 2008, 10, 1505–1508.

    Google Scholar 

  27. Avram, L.; Cohen, Y. J. Am. Chem. Soc. 2003, 125, 16180–16181.

    Article  CAS  Google Scholar 

  28. (a) Kumari, H.; Jin, P; Teat, S. J.; Barnes, C. L.; Dalgarno, S. J.; Atwood, J. L. J. Am. Chem. Soc. 2014, 136, 17002–17005. (b) Kumari, H.; Kline, S. R.; Wycoff, W. G.; Paul, R. L.; Mossine, A. V.; Deakyne, C. A.; Atwood, J. L. Angew. Chem., Int. Ed. 2012, 51, 5086–5091.

    Google Scholar 

  29. Kumari, H.; Deakyne, C. A.; Atwood, J. L. Acc. Chem. Res. 2014, 47, 3080–3088.

    Article  CAS  Google Scholar 

  30. (a) Beyeh, N. K.; Kogej, M.; Ahman, A.; Rissanen, K.; Schalley, C. A. Angew. Chem., Int. Ed. 2006, 45, 5214–5218.

    Google Scholar 

  31. Mecozzi, S.; Rebek, J. Jr. Chem. Eur. J. 1998, 4, 1016–1022.

    Article  CAS  Google Scholar 

  32. Cohen, Y.; Evan-Salem, T.; Avram, L. Supramol. Chem. 2008, 20, 71–79.

    Article  CAS  Google Scholar 

  33. Avram, L.; Cohen, Y. J. Am. Chem. Soc. 2005, 127, 5714–5719.

    Article  CAS  Google Scholar 

  34. Johnson, C. S. Jr. Prog. NMR Spectrosc. 1999, 34, 203–256.

    Article  CAS  Google Scholar 

  35. Ugono, O.; Holman, K. T. Chem. Commun. 2006, 2144–2146.

    Google Scholar 

  36. (a) Slovak, S.; Avram, L.; Cohen. Y. Angew. Chem. Int. Ed. 2010, 49, 428–431. (b) Slovak, S.; Cohen. Y. Chem. Eur. J. 2012. 18, 8515–8520.

    Google Scholar 

  37. (a) Gerkensmeier, T.; Mattay, J.; Näther, C. Chem. Eur. J. 2001, 7, 465–474. (b) Letzel, M. C.; Decker, B.; Rozhenko, A. B.; Schoeller, W. W.; Mattay. J. J. Am. Chem. Soc. 2004, 126, 9669–9674.

    Google Scholar 

  38. Evan-Salem, T.; Cohen. Y. Chem. Eur. J. 2007, 13, 7659–7663.

    Google Scholar 

  39. (a) Safont-Sempere, M. M; Fernandez, G.; Würther, F. Chem. Rev. 2011, 111, 5784–5814. (b) Lal Saha, M.; Schmittel, M. Org. Biomol. Chem. 2012, 10, 4651–4684.

    Google Scholar 

  40. (a) Kramer, R.; Lehn, J.-M.; Marquis-Rigault, A. Proc. Natl. Acad. Sci. USA. 1993, 90, 5394–5398. (b) Wu, A.; Isaacs, L. J. Am. Chem. Soc. 2003, 125, 4831–4835.

    Google Scholar 

  41. (a) Barrett, E.; Dale, T. J.; Rebek, J. Jr. J. Am. Chem. Soc. 2007, 129, 3818–3819. (b) Barrett, E.; Dale, T. J.; Rebek, J. Jr. Chem. Commun. 2007, 4224–4226. (c) Barrett, E.; Dale, T. J.; Rebek, J. Jr. J. Am. Chem. Soc. 2008, 130, 2344–2350.

    Google Scholar 

  42. (a) Ajami, D.; Hou, J.-L.; Dale, T. J.; Barrett, E.; Rebek, J., Jr. Proc. Natl. Acad. Sci. USA 2009, 106, 10430–10434. (b) Ajami, D.; Schramm, M. P.; Volonterio, A.; Rebek, J., Jr. Angew. Chem., Int. Ed. 2007, 46, 242–244.

    Google Scholar 

  43. (a) Philip, I.; Kaifer, A. E. J. Am. Chem. Soc. 2002, 124, 12678–12679. (b) Yamanaka, M.; Shivanyuk, A.; Rebek, J., Jr. J. Am. Chem. Soc. 2004, 126, 2939–2943. (c) Slovak, S.; Cohen. Y. Supramol. Chem. 2010, 22, 803–807. (d) Evan-Salem, T.; Baruch, I.; Avram, L.; Cohen, Y.; Palmer, L. C.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12296–12300. (e) Cohen, Y.; Evan-Salem, T.; Avram, L. Supramol. Chem. 2008, 20, 71–79.

    Google Scholar 

  44. (a) Philip, I.; Kaifer. A. E. J. Org. Chem. 2005, 70, 1558–1564. (b) Cave, G. W. V.; Antesberger, J.; Barbour, L. J.; McKinlay, R. M.; Atwood, J. L. Angew. Chem. Int. Ed. 2004, 43, 5263–5266. (c) Dalgarno, S. J.; Tucker, S. A.; Bassil, D. B.; Atwood. J. L. Science 2005, 309, 2037–2039. (d) Dalgarno, S. J.; Bassil, D. B.; Tucker, S. A.; Atwood. J. L. Angew. Chem. Int. Ed. 2006, 45, 7019–7022. (e) Dalgarno, S. J.; Szabo, T.; Siavosh-Haghighi, A.; Deakyne, C. A.; Adams, J. E.; Atwood. J. L. Chem. Commun. 2009, 1339–1341.

    Google Scholar 

  45. (a) Avram, L.; Cohen, Y. Org. Lett. 2006, 8, 219–222. (b) Guralnik, V.; Avram, L.; Cohen, Y. Org. Lett. 2014, 16, 5592–5595. (c) Avram. L.; Goldbourt, A.; Cohen, Y. Angew. Chem. Int. Ed. 2016, 52, 904–907.

    Google Scholar 

  46. (a) Kvasnica, M.; Chapin, J. C.; Purse, B. W. Angew. Chem. Int. Ed. 2011, 50, 2244–2248. (b) Chapin, J. C.; Kvasnica, M.; Purse, B. W. J. Am. Chem. Soc. 2012, 134, 15000–15009 (c) Chapin, J. C.; Purse, B. W. Supramol. Chem. 2014, 26, 517–520. (d) Shoushan-Yariv, S.; Cohen Y. Org. Lett. 2016, 18, 936–939.

    Google Scholar 

  47. (a) Note that larger high-field shift of about 4.0 ppm were observed in tightly packed dimeric capsules, see: Shivanyuk, A.; Rebek, J. Jr. Chem. Commun. 2002, 2326–2327. (b) Trambleu, L.; Rebek, J. Jr.; Science 2003, 301, 1219–1220.

    Google Scholar 

  48. a) Garozzo, D.; Gattuso, G.; Kohnke, F. H.; Notti, A.; Pappalardo, S.; Parisi, M. F. Org. Lett. 2003, 5, 4025–4028. b) Tanaka, Y.; Kato, Y.; Aoyama, Y. J. Am. Chem. Soc. 1990, 112, 2807–2808. c) Kikuchi Y.; Tanaka, Y.; Sutarto, S.; Kobayashi, K.; Toi, H.; Aoyama, Y. J. Am. Chem. Soc. 1992, 114, 1351–1358.

    Google Scholar 

  49. (a) Dalgarno, S. J.; Power, N. P.; Antesberger, J.; McKinlay, R. M.; Atwood, J. L. Chem. Commun. 2006, 3803–3805. (b) Antesberger, J.; Cave, G. W. V.; Ferrarelli, M. C.; Heaven, M. W.; Raston, C. L.; Atwood J. L. Chem Commun. 2005, 892–894. (c) Iyer, K. S.; Norret, M.; Dalgarno, S. J.; Atwood, J. L.; Raston, C. L. Angew. Chem. Int. Ed. 2008, 47, 6362–6366.

    Google Scholar 

  50. Christianson, D. W. Chem. Rev. 2006, 106, 3412–3442.

    Article  CAS  Google Scholar 

  51. (a) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012–3035. (b) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, Piet W. N. M. Chem. Soc. Rev. 2014, 43, 1660–1733. (c) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, Piet W. N. M. Chem. Soc. Rev. 2014, 43, 1734–1787.

    Google Scholar 

  52. (a) Jordan, J. H.; Gibb, B. C. Chem. Soc. Rev. 2015, 44, 547–585.

    Google Scholar 

  53. (a) Cavarzan, A.; Scarso, A.; Sgarbossa, P.; Strukul, G.; Reek, N. H. J. Am. Chem. Soc. 2011, 133, 2848–2853. (b) Cavarzan, A.; Reek, J. N. H.; Trentin, F.; Scarso, A.; Strukul, G. Catal. Sci.Technol. 2013, 3, 2898–2901. (c) Giust, S.; Sorella, G. L.; Sperni, L.; Strukul, G.; Scarso, A. Chem. Commun. 2015, 51, 1658–1661 (d) Giust, S.; Sorella, G. L.; Sperni, L.; Fabris, F.; Strukul, G.; Scarso, A. Asian J. Org. Chem. 2015, 4, 217–220. (e) Sorella, G. L.; Sperni, L.; Strukul, G.; Scarso, A. ChemCatChem. 2015, 7, 291–296.

    Google Scholar 

  54. (a) Zhang, Q.; Tiefenbacher, K. J. Am. Chem. Soc. 2013, 135, 16213–16219. (b) Catti, L.; Tiefenbacher, K. Chem Commun. 2015, 51, 892–894. (c) Zhang, Q.; Tiefenbacher, K. Nature Chem. 2015, 7, 197–202. (d) Roach, J. J.; Shevni, R. A. Nature Chem. 2015, 7, 187–189.

    Google Scholar 

  55. Croteau, R. Chem. Rev. 1987, 87, 929–954.

    Article  CAS  Google Scholar 

  56. (a) Shimizu, S.; Kiuchi, T.; Pan, N. Angew. Chem. Int. Ed. 2007, 46, 6442–6445. (b) Shimizu, S.; Usui, A.; Sugai, M.; Suematsu, Y.; Shirakawa, S.; Ichikawa, H. Eur. J. Org. Chem. 2013, 4734–4737.

    Google Scholar 

  57. (a) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825–841. (b) Jin, P.; Dalgarno, S. J.; Atwood, J. L. Coord. Chem. Rev. 2010, 254, 1760–1768.

    Google Scholar 

  58. (a) McKinlay, R. M.; Cave, G. W. V.; Atwood, J. L. Proc. Natl. Acad. Sci. U.S.A. 2005, 44, 5944–5948. (b) Dalgarno, S. J.; Power, N. P.; Warren, J. E.; Atwood, J. L. Chem. Commun. 2008, 1539–1541. (c) Kumari, H.; Dennis, C. L.; Mossine, C. V.; Deakyne, C. A.; Atwood, J. L. ACSNano 2012, 6, 272–275. (d) McKinlay, R. M.; Thallapally, P. K.; Cave, G. W. V.; Atwood, J. L. Angew. Chem. Int. Ed. 2005, 44, 5733–5736. (e) McKinlay, R. M.; Thallapally, P. K.; Atwood, J. L. Chem. Commun. 2006, 2956–2958. (f) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Chem. Commun. 2007, 3447–3449. (g) Jin, P.; Dalgarno, S. J.; Warren, J. E.; Teat, S. J.; Atwood, J. L. Chem. Commun. 2009, 3348–3350.

    Google Scholar 

  59. Jin, P.; Kumari, H.; Kennedy, S.; Barnes, C. L.; Teat, S. J.; Dalgarno, S. J.; Atwood, J. L. Chem. Commun. 2015, 50, 4508–4510.

    Article  Google Scholar 

  60. (a) Kumari, H.; Jin, P.; Teat, S. J.; Barnes.; Dalgarno, S. J.; Atwood, J. L. Angew. Chem. Int. Ed.. 2014, 53, 13088–13092. (b) Kumari, H.; Jin, P.; Deakyne, C. A.; Atwood, J. L. Curr. Org. Chem. 2013, 17, 1481–1488.

    Google Scholar 

Download references

Acknowledgement

Yoram Cohen wishes to thank the Israel Science Foundation (ISF, Jerusalem, Israel) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, Y., Slovak, S., Avram, L. (2016). Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis. In: Neri, P., Sessler, J., Wang, MX. (eds) Calixarenes and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-31867-7_31

Download citation

Publish with us

Policies and ethics