N-Alkyl Ammonium Resorcinarene Salts: A Versatile Family of Calixarene-Related Host Molecules

  • Ngong Kodiah Beyeh
  • Kari Rissanen


This chapter presents a review of the recent advances in the chemistry of N-alkylammonium resorcinarenes salt receptors. The Mannich condensation between amines (primary and secondary) and resorcinarenes result in resorcinarene tetrabenzoxazines and tetra-azoxazines. Only 2 isomers out of 16 potential isomers are formed. The resorcinarene tetrabenzoxazines possess deeper cavities than the parent resorcinarenes which are suitable for binding neutral and cationic guests. In the presence of mineral acids, the six-membered oxazine ring in the resorcinarene tetrabenzoxazines is opened, resulting in N-alkylammonium resorcinarene salts (NARSs). The NARSs possess four spatially-fixed anions within a circular cation-anion seam in between the ammonium moieties. Due to similarities in structure and binding properties, the NARSs are considered as hydrogen-bonded analogues of covalent cavitands. The deeper cavities of the NARSs as compared to the corresponding resorcinarenes are suitable for a variety of neutral guests and anions. Quite interestingly, the four spatially-fixed halides in NARXs are also suitable halogen-bond acceptors leading to multiple assemblies such as deep cavity cavitands, polymeric, dimeric and capsular assemblies in the presence of organic and inorganic halogen-bond donors. With non-spherical and larger oxo-anions such as triflate, the NARS possess even larger cavities that can bind anions as well as several neutral guests at the same time. The resorcinarene tetrabenzoxazines and especially the N-alkyl ammonium resorcinarenes salts have yet a mostly unexplored potential in contemporary supramolecular chemistry as receptors for neutral molecules and anions.


Resorcinarene salts Mannich condensation Receptors Weak interactions Halogen bonding 


  1. 1.
    Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826.CrossRefGoogle Scholar
  2. 2.
    Cram, D. J. Science 1983, 219, 1177.CrossRefGoogle Scholar
  3. 3.
    Tochtermann, W. J. für Prakt. Chemie/Chemiker-Zeitung 1994, 336, 474.CrossRefGoogle Scholar
  4. 4.
    Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron 1996, 52, 2663.CrossRefGoogle Scholar
  5. 5.
    Böhmer, V. Angew. Chem. Int. Ed. Engl. 1995, 34, 713.CrossRefGoogle Scholar
  6. 6.
    Grüner, B.; Mikulášek, L.; Báča, J.; Císařová, I.; Böhmer, V.; Danila, C.; Reinoso-García, M. M.; Verboom, W.; Reinhoudt, D. N.; Casnati, A.; Ungaro, R. Eur. J. Org. Chem. 2005, 2022.Google Scholar
  7. 7.
    Jasat, A.; Sherman, J. C. Chem. Rev. 1999, 99, 931.CrossRefGoogle Scholar
  8. 8.
    Erdtman, H.; Högberg, S.; Abrahamsson, S.; Nilsson, B. Tetrahedron Lett. 1968, 9, 1679.CrossRefGoogle Scholar
  9. 9.
    Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1989, 54, 1305.CrossRefGoogle Scholar
  10. 10.
    Luostarinen, M.; Laitinen, T.; Schalley, C. A.; Rissanen, K. Synthesis 2004, 255.Google Scholar
  11. 11.
    Luostarinen, M.; Nissinen, M.; Nieger, M.; Shivanyuk, A.; Rissanen, K. Tetrahedron 2007, 63, 1254.CrossRefGoogle Scholar
  12. 12.
    Mansikkamäki, H.; Nissinen, M.; Rissanen, K. Angew. Chem. Int. Ed. 2004, 43, 1243.CrossRefGoogle Scholar
  13. 13.
    Mansikkamäki, H.; Busi, S.; Nissinen, M.; Åhman, A.; Rissanen, K. Chem. – Eur. J. 2006, 12, 4289.CrossRefGoogle Scholar
  14. 14.
    Atwood, J. L.; Koutsantonis, G. A.; Raston, C. L. Nature 1994, 368, 229.CrossRefGoogle Scholar
  15. 15.
    Orr, G. W.; Barbour, L. J.; Atwood, J. L. Science 1999, 285, 1049.CrossRefGoogle Scholar
  16. 16.
    Atwood, J. L.; Barbour, L. J.; Jerga, A. Science 2002, 296, 2367.CrossRefGoogle Scholar
  17. 17.
    Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647.CrossRefGoogle Scholar
  18. 18.
    Matsushita, Y.; Matsui, T. Tetrahedron Lett. 1993, 34, 7433.CrossRefGoogle Scholar
  19. 19.
    Arnecke, R.; Böhmer, V.; Friebe, S.; Gebauer, S.; Krauss, G. J.; Thondorf, I.; Vogt, W. Tetrahedron Lett. 1995, 36, 6221.CrossRefGoogle Scholar
  20. 20.
    Schmidt, C.; Straub, T.; Falàbu, D.; Paulus, E. F.; Wegelius, E.; Kolehmainen, E.; Böhmer, V.; Rissanen, K.; Vogt, W. Eur. J. Org. Chem. 2000, 3937.Google Scholar
  21. 21.
    Luostarinen, M.; Shivanyuk, A.; Rissanen, K. Org. Lett. 2001, 3, 4141.CrossRefGoogle Scholar
  22. 22.
    Shivanyuk, A.; Schmidt, C.; Böhmer, V.; Paulus, E. F.; Lukin, O.; Vogt, W. J. Am. Chem. Soc. 1998, 120, 4319.CrossRefGoogle Scholar
  23. 23.
    Shivanyuk, A.; Paulus, E. F.; Rissanen, K.; Kolehmainen, E.; Böhmer, V. Chem. – Eur. J. 2001, 7, 1944.CrossRefGoogle Scholar
  24. 24.
    Schmidt, C.; Paulus, E. F.; Böhmer, V.; Vogt, W. New J. Chem. 2001, 25, 374.CrossRefGoogle Scholar
  25. 25.
    Airola, K.; Böhmer, V.; Paulus, E. F.; Rissanen, K.; Schmidt, C.; Thondorf, I.; Vogt, W. Tetrahedron 1997, 53, 10709.CrossRefGoogle Scholar
  26. 26.
    Nummelin, S.; Falabu, D.; Shivanyuk, A.; Rissanen, K. Org. Lett. 2004, 6, 2869.CrossRefGoogle Scholar
  27. 27.
    Arnecke, R.; Böhmer, V.; Paulus, E. F.; Vogt, W. J. Am. Chem. Soc. 1995, 117, 3286.CrossRefGoogle Scholar
  28. 28.
    El Gihani, M. T.; Heaney, H.; Slawin, A. M. . Tetrahedron Lett. 1995, 36, 4905.CrossRefGoogle Scholar
  29. 29.
    Iwanek, W.; Frohlich, R.; Urbaniak, M.; Nather, C.; Mattay, J. Tetrahedron 1998, 54, 14031.CrossRefGoogle Scholar
  30. 30.
    Schmidt, C.; Thondorf, I.; Kolehmainen, E.; Böhmer, V.; Vogt, W.; Rissanen, K. Tetrahedron Lett. 1998, 39, 8833.CrossRefGoogle Scholar
  31. 31.
    Kodiah Beyeh, N.; Valkonen, A.; Rissanen, K. Org. Lett. 2010, 12, 1392.CrossRefGoogle Scholar
  32. 32.
    Leigh, D. A.; Linnane, P.; Pritcharda, R. G.; Jacksonb, G. J. Chem. Soc., Chem. Commun. 1994, 4, 389.CrossRefGoogle Scholar
  33. 33.
    Atwood, J. L.; Szumna, A. J. Am. Chem. Soc. 2002, 124, 10646.CrossRefGoogle Scholar
  34. 34.
    Atwood, J. L.; Szumna, A. Chem. Commun. 2003, 940.Google Scholar
  35. 35.
    Beyeh, N. K.; Fehér, D.; Luostarinen, M.; Schalley, C. A.; Rissanen, K. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 381.CrossRefGoogle Scholar
  36. 36.
    Shivanyuk, A.; Spaniol, T. P.; Rissanen, K.; Kolehmainen, E.; Böhmer, V. Angew. Chem. Int. Ed. 2000, 39, 3497.CrossRefGoogle Scholar
  37. 37.
    Jordan, J. H.; Gibb, B. C. Chem. Soc. Rev. 2015, 44, 547.CrossRefGoogle Scholar
  38. 38.
    Beyeh, N. K.; Cetina, M.; Löfman, M.; Luostarinen, M.; Shivanyuk, A.; Rissanen, K. Supramol. Chem. 2010, 22, 737.CrossRefGoogle Scholar
  39. 39.
    Beyeh, N. K.; Ala-Korpi, A.; Cetina, M.; Valkonen, A.; Rissanen, K. Chem. – Eur. J. 2014, 20, 15144.CrossRefGoogle Scholar
  40. 40.
    Beyeh, N. K.; Pan, F.; Rissanen, K. Cryst. Growth Des. 2014, 14, 6161.CrossRefGoogle Scholar
  41. 41.
    Beyeh, N. K.; Ala-Korpi, A.; Pan, F.; Jo, H. H.; Anslyn, E. V.; Rissanen, K. Chem. – Eur. J. 2015, 21, 9556.CrossRefGoogle Scholar
  42. 42.
    Conn, M. M.; Rebek, J. Chem. Rev. 1997, 97, 1647.CrossRefGoogle Scholar
  43. 43.
    Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. 2013, 85, 1711.Google Scholar
  44. 44.
    Halogen Bonding: Fundamentals and Applications; Metrangolo, P., Resnati, G., Eds.; Springer-Verlag: Berlin, 2008.Google Scholar
  45. 45.
    Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Chem. Rev. 2015, 115, 7118.CrossRefGoogle Scholar
  46. 46.
    Erdelyi, M. Chem. Soc. Rev. 2012, 41, 3547.CrossRefGoogle Scholar
  47. 47.
    Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem. Soc. Rev. 2013, 42, 1667.CrossRefGoogle Scholar
  48. 48.
    Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. Acc. Chem. Res. 2013, 46, 2686.CrossRefGoogle Scholar
  49. 49.
    Koskinen, L.; Hirva, P.; Kalenius, E.; Jaaskelainen, S.; Rissanen, K.; Haukka, M. CrystEngComm 2015, 17, 1231.CrossRefGoogle Scholar
  50. 50.
    Politzer, P.; Lane, P.; Concha, M.; Ma, Y.; Murray, J. J. Mol. Model. 2007, 13, 305.CrossRefGoogle Scholar
  51. 51.
    Chudzinski, M. G.; McClary, C. A.; Taylor, M. S. J. Am. Chem. Soc. 2011, 133, 10559.CrossRefGoogle Scholar
  52. 52.
    Dumele, O.; Trapp, N.; Diederich, F. Angew. Chem. Int. Ed. 2015, 54, 12339.CrossRefGoogle Scholar
  53. 53.
    Lieffrig, J.; Jeannin, O.; Fourmigué, M. J. Am. Chem. Soc. 2013, 135, 6200.CrossRefGoogle Scholar
  54. 54.
    Beyeh, N. K.; Cetina, M.; Rissanen, K. Chem. Commun. 2014, 50, 1959.CrossRefGoogle Scholar
  55. 55.
    Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. J. Am. Chem. Soc. 1996, 118, 3108.CrossRefGoogle Scholar
  56. 56.
    Brammer, L.; Bruton, E. A.; Sherwood, P. Cryst. Growth Des. 2001, 1, 277.CrossRefGoogle Scholar
  57. 57.
    Beyeh, N. K.; Valkonen, A.; Bhowmik, S.; Pan, F.; Rissanen, K. Org. Chem. Front. 2015, 2, 340.CrossRefGoogle Scholar
  58. 58.
    Pan, F.; Beyeh, N. K.; Rissanen, K. J. Am. Chem. Soc. 2015, 137, 10406.CrossRefGoogle Scholar
  59. 59.
    Bertrán, J. F.; Rodríguez, M. Org. Magn. Reson. 1980, 14, 244.CrossRefGoogle Scholar
  60. 60.
    Beyeh, N. K.; Pan, F.; Rissanen, K. Angew. Chem. Int. Ed. 2015, 54, 7303.CrossRefGoogle Scholar
  61. 61.
    Beyeh, N. K.; Cetina, M.; Rissanen, K. Cryst. Growth Des. 2012, 12, 4919.CrossRefGoogle Scholar
  62. 62.
    Pan, F.; Beyeh, N. K.; Rissanen, K. RSC Adv. 2015, 5, 57912.CrossRefGoogle Scholar
  63. 63.
    Kuberski, B.; Szumna, A. Chem. Commun. 2009, 1959.Google Scholar
  64. 64.
    Szumna, A. Chem. Commun. 2009, 4191.Google Scholar
  65. 65.
    Wierzbicki, M.; Gilski, M.; Rissanen, K.; Jaskolski, M.; Szumna, A. CrystEngComm 2014, 16, 3773.Google Scholar
  66. 66.
    Jędrzejewska, H.; Wierzbicki, M.; Cmoch, P.; Rissanen, K.; Szumna, A. Angew. Chem., Int. Ed. 2014, 53, 13760.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Science, Department of Applied PhysicsAalto UniversityEspooFinland
  2. 2.Department of Chemistry, Nanoscience CenterUniversity of JyvaskylaJyvaskylaFinland

Personalised recommendations