Incremental Privacy-Preserving Association Rule Mining Using Negative Border

  • Duc H. TranEmail author
  • Wee Keong Ng
  • Y. D. Wong
  • Vinh V. Thai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9650)


Privacy preserving association rule mining can extract important rules from distributed data with limited privacy breaches. Protecting privacy in incremental maintenance for distributed association rule mining is necessary since data are frequently updated. In privacy preserving data mining, scanning all the distributed data is very costly. This paper proposes a new incremental protocol for privacy preserving association rule mining using negative border concept. The protocol scans old databases at most once, and therefore reducing the I/O time. We also conduct experiments to show the efficiency of our protocol over existing ones.


Privacy preserving Secure protocol Association rule mining Negative border Incremental 



This research is supported by the Singapore Maritime Institute.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of 20th International Conference on Very Large Databases, VLDB, pp. 487–499. Morgan Kaufmann (1994)Google Scholar
  2. 2.
    Ayan, N., Tansel, A., Arkun, E.: An efficient algorithm to update large itemsets with early pruning. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 287–291. ACM (1999)Google Scholar
  3. 3.
    Cheung, D., Han, J., Ng, V., Fu, A., Fu, Y.: A fast distributed algorithm for mining association rules. In: Fourth International Conference on Parallel and Distributed Information Systems, pp. 31–42. IEEE (1996)Google Scholar
  4. 4.
    Cheung, D., Han, J., Ng, V., Wong, C.: Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the Twelfth International Conference on Data Engineering, pp. 106–114. IEEE (1996)Google Scholar
  5. 5.
    Cheung, D.W., Lee, S.D., Kao, B.: A general incremental technique for maintaining discovered association rules. In: Proceedings of the Fifth International Conference On Database Systems For Advanced Applications, pp. 185–194 (1997)Google Scholar
  6. 6.
    Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. SIGKDD Explor. Newsl. 4(2), 28–34 (2002)CrossRefGoogle Scholar
  7. 7.
    Duan, Y., Canny, J.F., Zhan, J.Z.: Efficient privacy-preserving association rule mining: p4p style. In: CIDM, pp. 654–660. IEEE (2007)Google Scholar
  8. 8.
    Goldreich, O.: Secure multi-party computation. Manuscript (2002)Google Scholar
  9. 9.
    Han, S., Ng, W.-K.: Privacy-preserving genetic algorithms for rule discovery. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 407–417. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Ioannidis, I., Grama, A.: An efficient protocol for yao’s millionaires’ problem. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, p. 6, January 2003Google Scholar
  11. 11.
    Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–1037 (2004)CrossRefGoogle Scholar
  12. 12.
    Lee, C., Lin, C., Chen, M.: Sliding-window filtering: an efficient algorithm for incremental mining. In: Proceedings of the tenth international conference on Information and knowledge management, pp. 263–270. ACM (2001)Google Scholar
  13. 13.
    Mannila, H., Toivonen, H.: On an algorithm for finding all interesting sentences. In: Cybernetics and Systems, Volume II, The Thirteenth European Meeting on Cybernetics and Systems Research. Citeseer (1996)Google Scholar
  14. 14.
    Park, J.S., Chen, M.-S., Yu, P.S.: An effective hash-based algorithm for mining association rules. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 1995, pp. 175–186. ACM, New York (1995)Google Scholar
  15. 15.
    Tassa, T.: Secure mining of association rules in horizontally distributed databases. IEEE Trans. Knowl. Data Eng. 26(4), 970–983 (2014)CrossRefGoogle Scholar
  16. 16.
    Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An efficient algorithm for the incremental updation of association rules in large databases. In: Knowledge Discovery and Data Mining, pp. 263–266 (1997)Google Scholar
  17. 17.
    Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13(4), 593–622 (2005)Google Scholar
  18. 18.
    Veloso, A., Meira Jr., W., De Carvalho, M., Pôssas, B., Parthasarathy, S., Zaki, M.: Mining frequent itemsets in evolving databases. In: SIAM International Conference on Data Mining (2002)Google Scholar
  19. 19.
    Wong, W.K., Cheung, D.W., Hung, E., Liu, H.: Protecting privacy in incremental maintenance for distributed association rule mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 381–392. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Yao, A.C.: Protocols for secure computations. In: SFCS 1982: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington (1982)Google Scholar
  21. 21.
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Duc H. Tran
    • 1
    • 2
    Email author
  • Wee Keong Ng
    • 1
  • Y. D. Wong
    • 2
    • 3
  • Vinh V. Thai
    • 4
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Maritime InstituteNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore
  4. 4.School of Business IT and LogisticsRMIT UniversityMelbourneAustralia

Personalised recommendations