Skip to main content

Polychaetes as Ecosystem Engineers: Agents of Sustainable Technologies

  • Chapter
  • First Online:
Book cover Renewable Energy and Sustainable Technologies for Building and Environmental Applications

Abstract

Polychaetes are the so-called ecosystem engineers as they are constantly feeding, digging, burrowing, irrigating, reworking and ingesting particles in the sediment and near to the sediment–water interface. Their behaviour through bioturbation has significant impact on sediment biogeochemistry, in processing highly enriched sediments, and provides tolerance towards hypoxia and highly polluted areas. In this paper, the review introduced briefly about the distribution of polychaetes in the world, explained its role in tackling environmental issues such as detoxifying inorganic contaminants into less toxic compounds, processing organically enriched sediments via their digestive system and overcoming hypoxia and anoxia cases plus sulphidic conditions. All these criteria enable polychaetes to be agents of sustainable technology. Then, the focus is emphasized on the lack of studies about polychaetes in Malaysia. Increasing number of studies is currently in place to document their distribution in Malaysia. Research that addresses how polychaete processes their waste and how their body adapts to various environmental degradation would be vital as key towards sustainability in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baharudin NSH, Jessy RS, Ibrahim MH (2013) Wastewater treatment by using beach and construction sand in polychaete assisted sand filter. J Water Res Photon 135:184–189

    Google Scholar 

  2. Davidson J, Helwig N, Summerfelt ST (2008) Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent. Aquacult Eng 39:6–15

    Article  Google Scholar 

  3. Shi GW, Mazlan AG, Md Ali M, Che Cob Z (2014) The polychaeta (Annelida) communities of the Merambong and Tanjung Adang Shoals, Malaysia, and its relationship with the environmental variables. Malayan Nat J 66(1, 2):168–183

    Google Scholar 

  4. Read G, Fauchald K (eds) (2015) World polychaeta database. Accessed at http://www.marinespecies.org/polychaeta on 22 Aug 2015

  5. Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Ann Rev 16:229–311

    Google Scholar 

  6. Buchman N, Cuddington K, Lambrinos J (2005) A historical perspective on ecosystem engineering. In: Cuddington K, Bryers JE, Wilson WG, Hastings A (eds) Ecosystem engineers (Plants to Protists)

    Google Scholar 

  7. Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302

    Article  Google Scholar 

  8. Lindstrom M, Sandberg-Kilpi E (2008) Breaking the boundary—the key to bottom recovery? The role of mysid crustaceans in oxygenizing bottom sediments. J Exp Mar Biol Ecol 354(2):161–168

    Article  Google Scholar 

  9. Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2005) The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J Exp Mar Biol Ecol 326(1):77–88

    Article  Google Scholar 

  10. François F, Poggiale JC, Durbec JP, Stora G (1997) A new approach for the modelling of sediment reworking induced by a macrobenthic community. Acta Biotheor 45:295–319

    Article  Google Scholar 

  11. Granberg ME, Gunnarsson JS, Hedman JE, Rosenberg R, Jonsson P (2008) Bioturbation-driven release of organic contaminants from baltic sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ Sci Technol 42(4):1058–1065

    Article  Google Scholar 

  12. Quintana CO, Tang M, Kristensen E (2007) Simultaneous study of particle reworking, irrigation transport and reaction rates in sediment bioturbated by the polychaetes Heteromastus and Marenzelleria. J Exp Mar Biol Ecol 352(2):392–406

    Article  Google Scholar 

  13. Christensen B, Vedel A, Kristensen E (2000) Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes. Mar Ecol Prog Ser 192:203–217

    Article  Google Scholar 

  14. Nizzoli D, Bartoli M, Cooper M, Welsh DT, Underwood GJC, Viaroli P (2007) Implications for oxygen, nutrient fluxes and denitrification rates during the early stage of sediment colonisation by the polychaete Nereis spp. in four estuaries. Estuar Coast Shelf Sci 75(1–2):125–134

    Article  Google Scholar 

  15. Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sci Res Across Boundaries 68(4):434–442

    Article  Google Scholar 

  16. Madsen SD, Forbes TL, Forbes VE (1997) Particle mixing by the polychaete Capitella species I: coupling fate and effect of particle bound organic contaminant (fluoranthene) in a marine sediment. Mar Ecol Progress Ser 147:129–142

    Article  Google Scholar 

  17. Qu C, Li B, Wu H, Wang S, Giesy JP (2015) Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbon. Environ Geochem Health 37(1):587

    Article  Google Scholar 

  18. Catalano B, Moltedo G, Martuccio G, Gastaldi L, Virno-Lamberti C, Lauria A, Ausili A (2012) Can Hediste diversicolor (Nereidae, Polychaete) be considered a good candidate in evaluating PAH contamination? A multimarker approach. Chemosphere 86:875–882

    Article  Google Scholar 

  19. Dean HK (2008) The use of polychaetes (annelida) as indicator of marine pollution: a review. Rev Biol Trop (Int J Trop Biol 56(Suppl. 4):11–38. ISSN-0034-7744

    Google Scholar 

  20. Berthet B, Mouneyrac C, Amiard JC, AmiardTriquet C, Berthelot Y, Le Hen A, Mastain O, Rainbow PS, Smith BD (2003) Accumulation and soluble binding of cadmium, copper, and zinc in the polychaete Hediste diversicolor from coastal sites with different heavy metal bioavailabilities. Arch Environ Con Tox 45:468–478

    Article  Google Scholar 

  21. Nusetti O, Esclapés M, Salazar G, Nusetti S, Pulida S (2001) Biomarkers of oxidative stress in the polychaete Eurythoe complanata (Amphinomidae) under short term copper exposure. Bull Environ Contam Toxicol 66:576–583

    Google Scholar 

  22. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105(40):15452–15457

    Article  Google Scholar 

  23. Rabalais NN (2010) Eutrophication of estuarine and coastal ecosystems. Environmental microbiology. Wiley, New York, pp 115–135

    Google Scholar 

  24. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6(7):1273–1293

    Article  Google Scholar 

  25. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929

    Article  Google Scholar 

  26. Vaquer-Sunyer R, Duarte CM (2010) Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob Change Biol 17(5):1788–1797

    Article  Google Scholar 

  27. Greenwood N, Parker ER, Fernand L, Sivyer DB, Weston K, Painting SJ, Kroeger S, Forster RM, Lees HE, Mills DK, Laane RWPM (2010) Detection of low bottom water oxygen concentrations in the North Sea; implications for monitoring and assessment of ecosystem health. Biogeosciences 7(4):1357–1373

    Article  Google Scholar 

  28. Rasheed M (2004) Nutrient Fluxes from sediments of the northern Gulf of Aqaba under various anthropogenic activities. Lebanese Sci J 5:3–16

    Google Scholar 

  29. Steyaert M, Moodley L, Nadong T, Moens T, Soetaert K, Vincx M (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345(2):175–184

    Article  Google Scholar 

  30. Montagna PA, Ritter C (2006) Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, U.S.A. J Exp Mar Biol Ecol 330(1):119–131

    Article  Google Scholar 

  31. Sagasti A, Schaffner LC, Duffy JE (2000) Epifaunal communites thrive in an estuary with hypoxic episodes. Estuaries 23:474–487

    Article  Google Scholar 

  32. Lim H-S, Diaz RJ, Hong J-S, Schaffner LC (2006) Hypoxia and benthic community recovery in Korean coastal waters. Mar Pollut Bull 52(11):1517–1526

    Article  Google Scholar 

  33. Fritzsche D, Oertzen JA (1995) Metabolic responses to changing environmental conditions in the brackish water polychaetes Marenzelleria viridis and Hediste diversicolor. Mar Biol 121(4):693–699

    Article  Google Scholar 

  34. Linke-Gamenick I, Vismann B, Forbes VE (2000) Effects of fluoranthene and ambient oxygen levels on survival and metabolism in three sibling species of Capitella (Polychaeta). Mar Ecol Prog Ser 194:169–177

    Article  Google Scholar 

  35. Giere O, Preusse JH, Dubilier N (1999) Tubificoides benedii (Tubificidae, Oligochaeta)—a pioneer in hypoxic and sulfidic environments. An overview of adaptive pathways. Hydrobiologia 406(1):235–241

    Article  Google Scholar 

  36. Hourdez S, Weber RE, Green BN, Kenney JM, Fisher CR (2002) Respiratory adaptations in a deep-sea orbiniid polychaete from Gulf of Mexico brine pool NR-1: metabolic rates and hemoglobin structure/function relationships. J Exp Biol 205:1669–1681

    Google Scholar 

  37. Riedel B, Pados L, Pretterebner K, Schiemer L, Steckbauer A, Haselmair A, Zuschin M, Stachowitsch M (2014) Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level. Biogeosciences 11:1491–1518

    Article  Google Scholar 

  38. Bosch JA, Cornwell JC, Kemp MW (2015) Short-term effects of nereid polychaete size and density on sediment inorganic nitrogen cycling under varying oxygen conditions. Mar Ecol Prog Ser 524:155–169

    Article  Google Scholar 

  39. Kauppi L, Norkko A, Norkko J (2015) Large-scale species invasion into a low-diversity system:spatial and temporal distribution of the invasive polychaetes Marenzelleria spp. in the Baltic Sea. Biol Invasions 17:2055–2074

    Article  Google Scholar 

  40. Norkko J, Reed DC, Timmermann K, Norkko A, Gustafsson BG, Bonsdorff E, Slomp CP, Carstensen J, Conley DJ (2012) A welcome can of worms? Hypoxia mitigation by an invasive species. Glob Change Biol 18:422–434

    Article  Google Scholar 

  41. Sáncheza MA, Jaubet ML, Garaffo GV, Elías R (2013) Spatial and long-term analyses of reference and sewage-impacted sites in the SW Atlantic (38S, 57 W) for the assessment of sensitive and tolerant polychaetes. Mar Pollut Bull 74:325–333

    Article  Google Scholar 

  42. Gamenick I, Jahn A, Vopel K, Giere O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Mar Ecol Prog Ser 144:73–85

    Article  Google Scholar 

  43. Bischoff AA, Fink P, Waller U (2009) The fatty acid composition of Nereis diversicolor cultured in an integrated recirculated system: possible implications for aquacul-ture. Aquaculture 296:271–276

    Article  Google Scholar 

  44. Palmer PJ (2010) Polychaete assisted sand filter. Aquaculture 306(2010):369–377

    Article  Google Scholar 

  45. Brown N, Eddy S, Plaud S (2011) Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture 322–323:177–183

    Article  Google Scholar 

  46. Stabili L, Licciano M, Lezzi M, Giangrande A (2014) Microbiological accumulation by the Mediterranean invasive alien species Branchiomma bairdi(Annelida, Sabellidae): potential tool for bioremediation. Mar Pollut Bull 86:325–331

    Article  Google Scholar 

  47. Meksumpun C, Meksumpun S (1999) Polychaete-sediment relations in Rayong, Thailand. Environ Pollut 105:447–456

    Article  Google Scholar 

  48. Idris I, Arshad A (2013) Checklist of polychaetous annelids in Malaysia with Redescription of two commercially exploited species. Asian J Anim Vet Adv 8(3):409–436

    Article  Google Scholar 

  49. Idris I, Hutchings P, Arshad A (2014) Description of a new species of Marphysa Quatrefages, 1865 (Polychaeta: Eunicidae) from the west coast of Peninsular Malaysia and comparisons with species from Marphysa Group A from the Indo-West Pacific and Indian Ocean. Memoirs Mus Victoria 71:109–121

    Google Scholar 

  50. Ribero L, Polgar G (2012) The polychaete reefs of Jeram, Selangor In: Sasekumar A, Chong VC (eds) Mangrove and coastal environment of Selangor, Malaysia. University of Malaya, Kuala Lumpur, pp 87–95

    Google Scholar 

  51. Gholizadeh M, Yahya K, Talib A, Ahmad O (2012) Effects of environmental factors on polychaete assemblage in Penang National Park, Malaysia. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 6(12)

    Google Scholar 

Download references

Acknowledgments

We wish to thank Associate Prof. Dr. Mahamad Hakimi Ibrahim for introducing us to the world of polychaetes and to Nurul Syuhada Baharuddin for sharing her knowledge about polychaete-assisted sand filter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Widad Fadhullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fadhullah, W., Syakir, M.I. (2016). Polychaetes as Ecosystem Engineers: Agents of Sustainable Technologies. In: Ahmad, M., Ismail, M., Riffat, S. (eds) Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31840-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31840-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31838-7

  • Online ISBN: 978-3-319-31840-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics