Dependency as Question Entailment

  • Ivano CiardelliEmail author


In the past few years, a tight connection has emerged between logics of dependency and logics of questions. The aim of this paper is to show that this connection stems from a fundamental relation existing between dependency and questions. Once we expand our view on logic by bringing questions into the picture, dependency emerges as a facet of the fundamental logical notion of entailment, namely entailment among questions. Besides providing an insightful conceptual picture, this perspective yields a general and well-behaved way of dealing with dependency in logical systems.


Classical Logic Classical Formula Dependence Logic Classical Propositional Logic Polar Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am indebted to Lucas Champollion, Jeroen Groenendijk, Lauri Hella, Rosalie Iemhoff, Juha Kontinen, Vít Punčochář, Floris Roelofsen, and Fan Yang for stimulating discussion of the ideas presented here. A special thanks is owed to Jouko Väänänen for bringing together in two separate occasions the communities working on Dependence Logic and Inquisitive Semantics. The present paper has grown out of ideas sparked by those meetings. Financial support from the Netherlands Organization of Scientific Research (NWO) is gratefully acknowledged.


  1. 1.
    Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belnap, N.: Questions, answers, and presuppositions. J. Philos. 63(20), 609–611 (1966)CrossRefGoogle Scholar
  3. 3.
    Brasoveanu, A., Farkas, D.F.: How indefinites choose their scope. Linguist. Philos. 34, 1–55 (2011)CrossRefGoogle Scholar
  4. 4.
    Ciardelli, I.: Inquisitive semantics and intermediate logics. M.Sc. Thesis, University of Amsterdam (2009)Google Scholar
  5. 5.
    Ciardelli, I.: A first-order inquisitive semantics. In: Aloni, M., Bastiaanse, H., de Jager, T., Schulz, K. (eds.) Logic, Language, and Meaning: Selected Papers from the Seventeenth Amsterdam Colloquium, pp. 234–243. Springer, Berlin (2010)CrossRefGoogle Scholar
  6. 6.
    Ciardelli, I.: Interrogative dependencies and the constructive content of inquisitive proofs. In: Kohlenbach, U., Barceló, P., de Queiroz, R. (eds.) Logic, Language, Information and Computation - 21st International Workshop. WoLLIC 2014. Lecture Notes in Computer Science, pp. 109–123. Springer, Berlin (2014)Google Scholar
  7. 7.
    Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Log. 40(1), 55–94 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive semantics (2012). NASSLLI Lecture notes for a course at the North Americal School of Logic, Language, and Information. Unpublished, available at
  9. 9.
    Ciardelli, I., Groenendijk, J., Roelofsen, F.: Towards a logic of information exchange: an inquisitive witness semantics. In: Bezhanishvili, G., Marra, V., Löbner, S., Richter, F. (eds.) Logic, Language, and Computation: Revised Selected Papers from the Ninth International Tbilisi Symposium on Logic, Language, and Computation, pp. 51–72. Springer, Berlin (2013)CrossRefGoogle Scholar
  10. 10.
    Ciardelli, I., Groenendijk, J., Roelofsen, F.: On the semantics and logic of declaratives and interrogatives. Synthese 192(6), 1689–1728 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ebbing, J., Hella, L., Meier, A., Müller, J.S., Virtema, J., Vollmer, H.: Extended modal dependence logic. In: Libkin, L., Köhlenbach, U., de Queiroz, R. (eds.) Logic, Language, Information and Computation - 20th International Workshop. WoLLIC 2013. Lecture Notes in Computer Science, pp. 126–137. Springer, Berlin (2013)Google Scholar
  12. 12.
    Gamut, L.: Language, Logic and Meaning. Chicago University Press, Chicago, IL (1991)Google Scholar
  13. 13.
    Groenendijk, J.: The logic of interrogation. In: Matthews, T., Strolovitch, D. (eds.) Semantics and Linguistic Theory, pp. 109–126. Cornell University Press, Ithaca, NY (1999)Google Scholar
  14. 14.
    Groenendijk, J.: Inquisitive semantics: two possibilities for disjunction. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) Seventh International Tbilisi Symposium on Language, Logic, and Computation. Springer, Berlin (2009)Google Scholar
  15. 15.
    Groenendijk, J.: Erotetic languages and the inquisitive hierarchy. In a Festschrift for Martin Stokhof (2011).
  16. 16.
    Groenendijk, J., Roelofsen, F.: Inquisitive semantics and pragmatics. Presented at the Workshop on Language, Communication, and Rational Agency at Stanford (2009).
  17. 17.
    Groenendijk, J., Stokhof, M.: Studies on the semantics of questions and the pragmatics of answers. Ph.D. thesis, University of Amsterdam (1984)Google Scholar
  18. 18.
    Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14, 39–100 (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Groenendijk, J., Stokhof, M., Veltman, F.: Coreference and modality. In: Lappin, S. (ed.) Handbook of Contemporary Semantic Theory, pp. 179–216. Blackwell, Oxford (1996)Google Scholar
  20. 20.
    Hausser, R., Zaefferer, D.: Questions and answers in a context-dependent Montague grammar. In: Guenthner, F., Schmidt, S.J. (eds.) Formal Semantics and Pragmatics for Natural Languages, pp. 339–358. Reidel, Dordrecht (1978)CrossRefGoogle Scholar
  21. 21.
    Hella, L., Luosto, K., Sano, K., Virtema, J.: The expressive power of modal dependence logic. In: Kooi, R.G.B., Kurucz, A. (eds.) Advances in Modal Logic (AIML), pp. 294–312. College Publications, London (2014)Google Scholar
  22. 22.
    Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods. Proceedings of the Symposium on the Foundations of Mathematics, pp. 167–183. Pergamon, New York (1961)Google Scholar
  23. 23.
    Hintikka, J.: Knowledge and belief: an introduction to the logic of the two notions. Cornell University Press, 1962.Google Scholar
  24. 24.
    Hintikka, J., Sandu, G.: Game-theoretical semantics. In: Handbook of Logic and Language, pp. 361–410. Elsevier, Amsterdam (1997)Google Scholar
  25. 25.
    Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5(4), 539–563 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hodges, W.: Some strange quantifiers. In: Structures in Logic and Computer Science. Lecture Notes in Computer Science, pp. 51–65. Springer, New York (1997)Google Scholar
  27. 27.
    Mascarenhas, S.: Inquisitive semantics and logic. Master Thesis, University of Amsterdam (2009)Google Scholar
  28. 28.
    Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive content. Synthese 190(1), 79–102 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Scha, R.: Logical foundations for question answering. Ph.D. thesis, University of Groningen (1983)Google Scholar
  30. 30.
    ten Cate, B., Shan, C.C.: Axiomatizing Groenendijk’s logic of interrogation. In: Aloni, M., Butler, A., Dekker, P. (eds.) Questions in Dynamic Semantics, pp. 63–82. Elsevier, New York (2007)CrossRefGoogle Scholar
  31. 31.
    Tichy, P.: Questions, answers, and logic. Am. Philos. Q. 15, 275–284 (1978)Google Scholar
  32. 32.
    Troelstra, A., van Dalen, D.: Constructivism in Mathematics, An Introduction, vol. 1. Studies in Logic and the Foundations of Mathematics, vol. 121. North-Holland, Amsterdam (1988)Google Scholar
  33. 33.
    Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Väänänen, J.: Modal dependence logic. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction. Amsterdam University Press, Amsterdam (2008)Google Scholar
  35. 35.
    Väänänen, J.: Multiverse set theory and absolutely undecidable propositions. In: Kennedy, J. (ed.) Interpreting Gödel: Critical Essays, Cambridge University Press, p. 180 (2014)Google Scholar
  36. 36.
    Velissaratou, S.: Conditional questions and which-interrogatives. M.Sc. Thesis, University of Amsterdam (2000)Google Scholar
  37. 37.
    Veltman, F.: Data semantics. In: Groenendijk, J., Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language. Mathematical Centre, Amsterdam (1981)Google Scholar
  38. 38.
    Veltman, F.: Defaults in update semantics. J. Philos. Log. 25(3), 221–261 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yang, F.: On extensions and variants of dependence logic: a study of intuitionistic connectives in the team semantics setting. Ph.D. thesis, University of Helsinki (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ILLC, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations