Grelling on Dependence

  • Jouko VäänänenEmail author


Kurt Grelling wrote a paper in 1939 presenting various concepts of dependence. The paper remained unpublished, but deserves to be read today. Many of the ideas of the paper have been subsequently reinvented but one concept, which we call G-dependence, is still genuinely new, and that is the main topic of this paper. We isolate some basic properties of G-dependence and pose the question of finding simple axioms for it.



The author would like to thank the Simons Foundation for a fellowship and Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme Mathematical, Foundational and Computational Aspects of the Higher Infinite supported by EPSRC Grant Number EP/K032208/.


  1. 1.
    Armstrong, W.W.: Dependency structures of data base relationships. IFIP Congress, 580–583 (1974)Google Scholar
  2. 2.
    Bell, J.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  3. 3.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Universitext. Springer, Berlin (2001). Reprint of the 1997 originalGoogle Scholar
  4. 4.
    Codd, E.F.: Further normalization of the data base relational model. IBM Research Report, San Jose, California, RJ909 (1971)Google Scholar
  5. 5.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fagin, R.: Multivalued dependencies and a new normal form for relational databases. ACM Trans. Database Syst. 2 (3), 262–278 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Galliani, P.: Inclusion and exclusion dependencies in team semantics—on some logics of imperfect information. Ann. Pure Appl. Logic 163 (1), 68–84 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101 (2), 399–410 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grelling, K.: A logical theory of dependence (included in [19]) (1939)Google Scholar
  10. 10.
    Grelling, K., Oppenheim, P.: Logical analysis of ‘gestalt’ as ‘functional whole’ (included in [19]) (1939)Google Scholar
  11. 11.
    Hanspach, M., Goetz, M.: On covert acoustical mesh networks in air. J. Commun. 8 (11), 758–767 (2013)CrossRefGoogle Scholar
  12. 12.
    Hintikka, J.: Hyperclassical logic (a.k.a. IF logic) and its implications for logical theory. Bull. Symb. Log. 8 (3), 404–423 (2002)Google Scholar
  13. 13.
    Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5 (4), 539–563 (electronic) (1997)Google Scholar
  14. 14.
    Hodges, W.: Some strange quantifiers. In: Structures in Logic and Computer Science. Lecture Notes in Computer Science, pp. 51–65. Springer, Berlin (1997)Google Scholar
  15. 15.
    Hyttinen, G., Paolini T., Väänänen, J.: Quantum team logic and bell’s inequalities. Rev. Symb. Log. 8 (4), 722–742 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kolmogoroff, A.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Math. 2 (3), IV + 62 S (1933)Google Scholar
  17. 17.
    Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Log. Lang. Inf. 18 (3), 317–332 (2009). Erratum: ibid. 20 (1), 133–134 (2011)Google Scholar
  18. 18.
    Paolini, G., Väänänen, J.: Dependence logic in pregeometries and omega-stable theories. J. Symb. Log. 81 (1), 32–55 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Smith, B. (ed.): Foundations of Gestalt Theory. Philosophia, Munich and Vienna (1988)Google Scholar
  20. 20.
    Väänänen, J.: Dependence Logic. London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)Google Scholar
  21. 21.
    van der Waerden, B.L.: Moderne Algebra. Unter Benutzung von Vorlesungen von E. Artin und E. Noether. Bd. I. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete Bd. 23). VIII + 243 S. Berlin, J. Springer, Berlin (1930)Google Scholar
  22. 22.
    Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57, 509–533 (1935)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations