Advertisement

Dependence and Independence in Social Choice: Arrow’s Theorem

  • Eric Pacuit
  • Fan Yang
Chapter

Abstract

One of the goals of social choice theory is to study the group decision methods that satisfy two types of desiderata. The first type ensures that the group decision depends in the right way on the voters’ opinions. The second type ensures that the voters are free to express any opinion, as long as it is an admissible input to the group decision method. Impossibility theorems, such as Arrow’s Theorem, point to an interesting tension between these two desiderata. In this paper, we argue that dependence and independence logic offer an interesting new perspective on this aspect of social choice theory. To that end, we develop a version of independence logic that can express Arrow’s properties of preference aggregation functions. We then prove that Arrow’s Theorem is derivable in a natural deduction system for the first-order consequences of our logic.

Keywords

Social Choice Group Decision Social Ranking Social Choice Function Social Choice Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramsky, S.: Arrow’s theorem by arrow theory. In: Villaveces, A., Kossak, R., Kontinen, J. Hirvonen, Å. (eds.) Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, pp. 15–30. De Gruyter, Boston, MA (2015)Google Scholar
  2. 2.
    Agotnes, T., van der Hoek, W., Wooldridge, M.: On the logic of preference and judgment aggregation. Auton. Agent. Multi-Agent Syst. 22 (1), 4–30 (2009)CrossRefGoogle Scholar
  3. 3.
    Arrow, K.J.: Social Choice and Individual Values. Yale University Press, New Haven, CT (1951)zbMATHGoogle Scholar
  4. 4.
    Blau, J.H.: Arrow’s theorem with weak independence. Economica 38 (152), 413–420 (1971)CrossRefGoogle Scholar
  5. 5.
    Campbell, D.E., Kelly, J.S.: Impossibility theorems in the Arrovian framework. In: Arrow, K.J., Suzumura, A.S.K. (eds.) Handbook of Social Choice and Welfare, Elsevier, vol. 1, pp. 35–94 (2002)Google Scholar
  6. 6.
    Campbell, D.E., Kelly, J.S.: Social welfare functions that satisfy Pareto, anonymity, and neutrality, but not independence of irrelevant alternatives. Soc. Choice Welf. 29 (1), 69–82 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cato, S.: Independence of irrelevant alternatives revisited. Theor. Decis. 76 (4), 511–527 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciná, G., Endriss, U.: A syntactic proof of Arrow’s theorem in a modal logic of social choice functions. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2015) (2015)Google Scholar
  9. 9.
    Coleman, J.L., Ferejohn, J.: Democracy and social choice. Ethics 97 (1), 6–25 (1986)CrossRefGoogle Scholar
  10. 10.
    Fishburn, P.: Arrow’s impossibility theorem: concise proof and infinitely many voters. J. Econ. Theory 2, 103–106 (1970)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Galliani, P.: Inclusion and exclusion in team semantics: on some logics of imperfect information. Ann. Pure Appl. Log. 163 (1), 68–84 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Geanakoplos, J.: Three brief proofs of Arrow’s theorem. Econ. Theory 26 (1), 211–215 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41 (3), 587–601 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101 (2), 399–410 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Grandi, U., Endriss, U.: First-order logic formalisation of impossibility theorems in preference aggregation. J. Philos. Log. 42 (4), 595–618 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hannula, M.: Axiomatizing first-order consequences in independence logic. Ann. Pure Appl. Log. 166 (1), 61–91 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hausman, D.M.: Preference, Value, Choice and Welfare. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  18. 18.
    Herzberg, F., Eckert, D.: The model-theoretic approach to aggregation: impossibility results for finite and infinite electorates. Math. Soc. Sci. 1 (2012), 41–47 (64)Google Scholar
  19. 19.
    Kalai, E., Muller, E., Satterthwaite, M.A.: Social welfare functions when preferences are convex and continuous: Impossibility results. Public Choice 34, 87–97 (1979)CrossRefGoogle Scholar
  20. 20.
    Kelly, J.S.: Arrow Impossibility Theorems. Academic, New York (1978)zbMATHGoogle Scholar
  21. 21.
    Kemp, M.C., Ng, Y.K.: On the existence of social welfare functions, social orderings and social decision functions. Economica 43, 59–66 (1976)CrossRefGoogle Scholar
  22. 22.
    Kirman, A.P., Sondermann, D.: Arrow’s theorem, many agents and invisible dictators. J. Econ. Theory 5, 267–277 (1972)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kontinen, J.: On natural deduction in dependence logic. In: Villaveces, A., Kossak, R., Kontinen, J., Hirvonen, A. (eds.) Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, pp. 297–304. De Gruyter, Boston, MA (2015)Google Scholar
  24. 24.
    Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Log. Lang. Inf. 18(3), 317–332 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kontinen, J., Väänänen, J.: Axiomatizing first-order consequences in dependence logic. Ann. Pure Appl. Log. 164 (11), 1101–1117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    List, C.: Social choice theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2013 edn. (2013)Google Scholar
  27. 27.
    Mackie, G.: Democracy Defended. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  28. 28.
    May, K.: A set of independent necessary and sufficient conditions for simply majority decision. Econometrica 20 (4), 680–684 (1952)CrossRefzbMATHGoogle Scholar
  29. 29.
    Morreau, M.: It simply does not add up: trouble with overall similarity. J. Philos. 107, 469–490 (2010)CrossRefGoogle Scholar
  30. 30.
    Morreau, M.: Arrow’s theorem. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2014 edn. (2014)Google Scholar
  31. 31.
    Morreau, M.: Mr. Fit, Mr. Simplicity and Mr. Scope: from social choice to theory choice. Erkenntnis 79, 1253–1268 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Muller, E., Satterthwaite, M.A.: The equivalence of strong positive association and strategy-proofness. J. Econ. Theory 14, 412–418 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Okasha, S.: Theory choice and social choice: Kuhn versus Arrow. Mind 120, 83–115 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pacuit, E.: Voting methods. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2012 edn. (2012)Google Scholar
  35. 35.
    Parks, R.P.: An impossibility theorem for fixed preferences: a dictatorial Bergson-Samuelson welfare function. Rev. Econ. Stud. 43 (3), 447–450 (1976)CrossRefzbMATHGoogle Scholar
  36. 36.
    Riker, W.H.: Liberalism Against Populism. W. H. Freeman, San Francisco, CA (1982)Google Scholar
  37. 37.
    Roberts, K.W.S.: Social choice theory: the single-profile and multi-profile approaches. Rev. Econ. Stud. 47 (2), 441–450 (1980)CrossRefzbMATHGoogle Scholar
  38. 38.
    Rubinstein, A.: The single profile analogues to multi profile theorems: mathematical logic’s approach. Int. Econ. Rev. 25 (3), 719–730 (1984)CrossRefzbMATHGoogle Scholar
  39. 39.
    Saari, D.: Mathematical structure of voting paradoxes: II. Positional voting. J. Econ. Theory 15 (1), 55–102 (2000)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Saari, D.: Chaotic Elections! A Mathematician Looks at Voting. American Mathematical Society, Providence, RI (2001)zbMATHGoogle Scholar
  41. 41.
    Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10 (2), 187–217 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Sen, A.: The possibility of social choice. Am. Econ. Rev. 89 (3), 349–378 (1999)CrossRefGoogle Scholar
  43. 43.
    Sen, A., Maskin, E.: The Arrow Impossibility Theorem. Columbia University Press, New York (2014)Google Scholar
  44. 44.
    Stegenga, J.: An impossibility theorem for amalgamating evidence. Synthese 190 (2), 2391–2411 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Tang, P., Lin, F.: Computer-aided proofs of Arrow’s and other impossibility theorems. Artif. Intell. 173 (11), 1041–1053 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  47. 47.
    Troquard, N., van der Hoek, W., Wooldridge, M.: Reasoning about social choice functions. J. Philos. Log. 40 (4), 473–498 (2011)Google Scholar
  48. 48.
    Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  49. 49.
    Väänänen, J.: Dependence logic. Talk — Dagstuhl Seminar (2010)Google Scholar
  50. 50.
    Wilson, R.: Social choice theory without the Pareto principle. J. Econ. Theory 5, 478–486 (1972)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Young, H.P.: Optimal voting rules. J. Econ. Perspect. 9 (1), 51–64 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MarylandCollege ParkUSA
  2. 2.Department of Philosophy and Religious StudiesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations