Developing a Bioacoustic Method for Mating Disruption of a Leafhopper Pest in Grapevine



Widespread use of substrate-borne vibrational signals by insects presents a unique opportunity to develop alternative methods of pest control, enabled by better understanding insect behaviour and advances in technology. One such method is currently under development for use against the invasive leafhopper Scaphoideus titanus, a vector of Flavescence dorée in European vineyards. Basic understanding of the vector’s sexual behaviour and observations of naturally occurring antagonistic interactions between males enabled development of vibrational broadcasts that obscured signal characteristics important for mate recognition and localization in small-scale field tests. The naturally occurring antagonistic interactions constitute acoustic noise that can be characterized, adjusted and broadcasted using modified acoustic technology. Steps in development of this technology to maximize reliability and energy efficiency are outlined, as well as plans for large-scale field testing and future perspectives. While several specific factors work in favour of using vibrational disruption in the system S. titanus (pest) and grapevine (host) and possibilities of direct transfer to other systems are limited, success of this approach is nevertheless hoped to stimulate the development of vibrational playback in general for control of other insect pests.


Scaphoideus titanus Cicadellidae Vineyards Vibrational communication Mating disruption Pest control 



Work presented here was made possible by support from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement n∘265865, Slovenian Research Agency (P1-0255, J1-2181) and CBC-Europe Ltd., Milano, Italy.


  1. Al-Wahaibi AK, Morse JG (2009) Egg morphology and stages of embryonic development of the glassy-winged sharpshooter (Hemiptera: Cicadellidae). Ann Entomol Soc Am 102:249–260CrossRefGoogle Scholar
  2. Angelini E, Negrisolo E, Clair D, Borgo M, Boudon-Padieu E (2003) Phylogenetic relationships among Flavescence dorée strains and related phytoplasmas determined by heteroduplex mobility assay and sequence of ribosomal and nonribosomal DNA. Plant Pathol 52:663–672CrossRefGoogle Scholar
  3. Aubin T, Jouventin P (2002) Localisation of an acoustic signal in a noisy environment: the display call of the king penguin Aptenodytes patagonicus. J Exp Biol 205:3793–3798PubMedGoogle Scholar
  4. Barth FG, Bleckmann H, Bohnenberger J, Seyfarth E-A (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) II. On the vibratory environment of a wandering spider. Oecologia 77:194–201CrossRefGoogle Scholar
  5. Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 228–278CrossRefGoogle Scholar
  6. Beanland L, Noble R, Wolf TK (2006) Spatial and temporal distribution of North American grapevine yellows disease and of potential vectors of the causal phytoplasmas in Virginia. Environ Entomol 35:332–344CrossRefGoogle Scholar
  7. Belli G, Bianco PA, Casati P, Scattini G (2000) Gravi e diffuse manifestazioni di flavescenza dorata della vite in Lombardia. Informatore Agrario 56(30):56–59Google Scholar
  8. Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos Trans R Soc Lond B 353:407–419CrossRefGoogle Scholar
  9. Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209CrossRefGoogle Scholar
  10. Cardé RT (1990) Principles of mating disruption. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management. Marcel Dekker Inc, New York, pp47–71Google Scholar
  11. Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585CrossRefGoogle Scholar
  12. Caudwell A, Kuszala C, Bachelier JC, Larrue J (1970) Transmission de la Flavescence dorée de la vigne aux plantes herbacées par l’allongement du temps d’utilisation de la cicadelle Scaphoideus littoralis Ball et l’étude de sa survie sur un grand nombre d’espèces végétales. Ann Phytopathol 2:415–428Google Scholar
  13. Caudwell A, Larrue J, Boudon-Padieu E, McLean GD (1997) Flavescence dorée elimination from dormant wood of grapevines by hot-water treatment. Aust J Grape Wine Res 3:21–25CrossRefGoogle Scholar
  14. Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56CrossRefPubMedGoogle Scholar
  15. Chuche J, Thiéry D, Mazzoni V (2011) Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication? Naturwissenschaften 98:639–642CrossRefPubMedGoogle Scholar
  16. Chuche J, Thiéry D (2009) Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector. Naturwissenschaften 96:827–834Google Scholar
  17. Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34(2):381–403CrossRefGoogle Scholar
  18. Claridge MF (1985) Acoustic signals in the Homoptera: behaviour, taxonomy, and evolution. Annu Rev Entomol 30:297–317CrossRefGoogle Scholar
  19. Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334CrossRefGoogle Scholar
  20. Cocroft RB, Hamel J, Su Q, Gibson J (2014) Vibrational playback experiments: challenges and solutions. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 249–274Google Scholar
  21. Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50CrossRefPubMedGoogle Scholar
  22. Čokl A, Zorović M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Proc 75:40–54CrossRefGoogle Scholar
  23. Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physiol 54:1113–1124CrossRefPubMedGoogle Scholar
  24. Ehler LE (2006) Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag Sci 62:787–789CrossRefPubMedGoogle Scholar
  25. Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 215–247Google Scholar
  26. Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc Lond B 340:215–225CrossRefGoogle Scholar
  27. Epstein L (2014) Fifty years since Silent spring. Annu Rev Phytopathol 52(3):77–402Google Scholar
  28. Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Interplant vibrational communication in a leafhopper insect. PLoS One 65, e1962Google Scholar
  29. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7(3), e32954CrossRefPubMedPubMedCentralGoogle Scholar
  30. Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42:123–146CrossRefPubMedGoogle Scholar
  31. Gaston LK, Shorey HH, Saario SA (1967) Insect population control by the use of sex pheromones to inhibit orientation between the sexes. Nature 213:1155CrossRefGoogle Scholar
  32. Greenfield MD (1994) Cooperation and conflict in the evolution of signal interactions. Annu Rev Ecol Syst 25:97–126CrossRefGoogle Scholar
  33. Gröning J, Hochkirch A (2008) Reproductive interference between animal species. Q Rev Biol 83:257–282CrossRefPubMedGoogle Scholar
  34. Hammond TJ, Bailey WJ (2003) Eavesdropping and defensive auditory masking in an Australian bushcricket Caedicia (Phaneropterinae: Tettigoniidae: Orthoptera). Behaviour 140:79–95CrossRefGoogle Scholar
  35. Hill PSM (2001) Vibration and animal communication: a review. Am Zool 41:1135–1142Google Scholar
  36. Hofstetter RW, Dunn DD, McGuire R, Potter KA (2014) Using acoustic technology to reduce bark beetle reproduction. Pest Manag Sci 70(1):24–27CrossRefPubMedGoogle Scholar
  37. Howard RD, Young RJ (1998) Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim Behav 55:1165–1179CrossRefPubMedGoogle Scholar
  38. Ioriatti C, Lucchi A, Bagnoli B (2008) Grape areawide pest management in Italy. In: Koul O, Cuperus G, Elliott N (eds) Areawide pest management: theory and implementation. CABI, Wallingford, pp 208–225CrossRefGoogle Scholar
  39. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104(4):1125–1137CrossRefPubMedGoogle Scholar
  40. Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270CrossRefPubMedGoogle Scholar
  41. Kuhelj A, De Groot M, Pajk F, Simčič T, Virant-Doberlet M (2015) Energetic cost of vibrational signalling in a leafhopper. Beh Ecol Sociobiol 69(5):815–828CrossRefGoogle Scholar
  42. Laimer M, Lemaire O, Herrbach E, Golsdmith V et al (2009) Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J Plant Pathol 91:7–23Google Scholar
  43. Landis DA, Menalled FD, Costamagna AC, Wilkinson TK (2005) Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes. Weed Sci 53(6):902–908CrossRefGoogle Scholar
  44. Laumann RA, Blassioli-Moraes CM, Čokl A, Borges M (2007) Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim Behav 73:637–649CrossRefGoogle Scholar
  45. Legendre F, Marting PR, Cocroft RB (2012) Competitive masking of vibrational signals during mate searching in a treehopper. Anim Behav 83:361–368CrossRefGoogle Scholar
  46. Lessio F, Alma A (2004a) Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera Cicadellidae), vector of the phytoplasma agent of grapevine flavescence dorée. Agric For Entomol 6:121–127CrossRefGoogle Scholar
  47. Lessio F, Alma A (2004b) Seasonal and daily movement of Scaphoideus titanus Ball (Homoptera: Cicadellidae). Environ Entomol 33(6):1689–1694CrossRefGoogle Scholar
  48. Lirong Q, Guanghui T, Tianzhen H, Baoying Z, Xiaona L (2010) Influence of sound wave stimulation on the growth of strawberry in sunlight green house. In: Li D, Zhao C (eds) Computer and computing technologies in agriculture III. Springer, Berlin, pp 449–454Google Scholar
  49. Lucchi A, Mazzoni V, Prešern J, Virant-Doberlet M (2004) Mating behaviour of Scaphoideus titanus Ball (Hemiptera: Cicadellidae). In: Kerzhner IM (ed) Abstracts of the 3rd European Hemiptera congress, Russian Academy of Sciences, St. Petersburg, 8–11 June 2004Google Scholar
  50. Magal C, Schöller M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108(5):2412–2418CrossRefPubMedGoogle Scholar
  51. Maixner M, Pearson RC, Boudon-Padieu E, Caudwell A (1993) Scaphoideus titanus, a possible vector of grapevine yellows in New York. Plant Dis 77:408–413CrossRefGoogle Scholar
  52. Manabe K (1997) Vocal plasticity in budgerigars: various modifications of vocalization by operant conditioning. Biomed Res 18:125–132Google Scholar
  53. Mankin RW (2012) Applications of acoustics in insect pest management. CAB Rev 7(1):1–7CrossRefGoogle Scholar
  54. Mankin RW, Rohde BB, Mcneill SA, Paris TM, Zagvazdina NI, Greenfeder S (2013) Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96(4):1546–1555CrossRefGoogle Scholar
  55. Mazzoni V, Lucchi A, Prešern J, Virant-Doberlet M (2008) Vibrational communication and other behavioural traits in Scaphoideus titanus. Bull Insectol 61(1):187–188Google Scholar
  56. Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009a) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413CrossRefPubMedGoogle Scholar
  57. Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009b) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185CrossRefGoogle Scholar
  58. Mazzoni V, Ioriatti C, Trona F, Lucchi A, De Cristofaro A, Anfora G (2009c) Study on the role of olfaction in host plant detection of Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs. J Econ Entomol 102(3):974–980CrossRefPubMedGoogle Scholar
  59. Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 125–145Google Scholar
  60. McNett GD, Miles RN, Homentcovschi D, Cocroft RB (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251CrossRefGoogle Scholar
  61. McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051CrossRefGoogle Scholar
  62. McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool (Lond) 239:101–122CrossRefGoogle Scholar
  63. Metcalf RL (1994) Insecticides in pest management. In: Metcalf RL, Luckmann WH (eds) Introduction to insect pest management, 3rd edn. Wiley, New York, pp 245–314Google Scholar
  64. Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208CrossRefGoogle Scholar
  65. Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971CrossRefPubMedGoogle Scholar
  66. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281CrossRefGoogle Scholar
  67. Miranda A (2006) Substrate-borne signal repertoire and courtship jamming by adults of Ennya chrysura (Hemiptera: Membracidae). Ann Ent Soc Am 99(2):374–386CrossRefGoogle Scholar
  68. Niklas KJ (1998) Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae). Ann Bot 82(2):147–156CrossRefGoogle Scholar
  69. OEPP/EPPO (1983) Data sheets on quarantine organisms No. 94, Grapevine flavescence dorée MLO. Bulletin OEPP/EPPO Bulletin 13(1)Google Scholar
  70. Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera Auchenorrhyncha with notes on their sound production. Opusc Entomol 10:1–145Google Scholar
  71. Papura D, Burban C, van Helden M, Giresse X, Nusillard B, Guillemaud T, Kerdelhué C (2012) Microsatellite and mitochondrial data provide evidence for a single major introduction for the Neartic leafhopper Scaphoideus titanus in Europe. PLoS ONE 7(5), e36882CrossRefPubMedPubMedCentralGoogle Scholar
  72. Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Cent Eur J Biol 3(2):189–197Google Scholar
  73. Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interface 9(73):1898–1907CrossRefPubMedPubMedCentralGoogle Scholar
  74. Polajnar J, Eriksson A, Rossi Staconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Proc 107:68–78CrossRefGoogle Scholar
  75. Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations – potential for insect pest control. Pest Manag Sci 71(1):15–23CrossRefPubMedGoogle Scholar
  76. Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci (in press). doi:  10.1007/s10340-015-0726-3 Google Scholar
  77. Popper AN, Salmon M, Horch KW (2001) Acoustic detection and communication by decapod crustaceans. J Comp Physiol A 187:83–89CrossRefPubMedGoogle Scholar
  78. Potash LM (1972) Noise-induced changes in calls of the Japanese quail. Psychon Sci 26:252–254CrossRefGoogle Scholar
  79. Riolo P, Minus RL, Landi L, Nardi S, Ricci E, Righi M, Nunzio I (2014) Population dynamics and dispersal of Scaphoideus titanus from recently recorded infested areas in central-eastern Italy. Bull Insectol 67(1):99–107Google Scholar
  80. Rohde BB, Paris TM, Heatherington EM, Hall DG, Mankin RW (2013) Responses of Diaphorina citri (Hemiptera: Psyllidae) to conspecific vibrational signals and synthetic mimics. Ann Ent Soc Am 106(3):392–399CrossRefGoogle Scholar
  81. Ronacher B, Krahe R, Hennig RM (2000) Effects of signal duration on the recognition of masked communication signals by the grasshopper Chortippus biguttulus. J Comp Physiol A 186:1065–1072CrossRefPubMedGoogle Scholar
  82. Rossi Stacconi MV, Romani R (2012) Antennal sensory structures in Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Micros Res Techn 75(4):458–466CrossRefGoogle Scholar
  83. Sánchez-Bayo F, Tennekes HA (2015) Environmental risk assessment of agrochemicals – a critical appraisal of current approaches. In: Larramendy ML, Soloneski S (eds) Toxicity and hazard of agrochemicals. InTech, Rijeka, pp 1–37Google Scholar
  84. Sinnot JM, Stebbins WC, Moody DB (1975) Regulation of voice amplitude by the monkey. J Acoust Soc Am 58:412–414CrossRefGoogle Scholar
  85. Sisterson MS (2012) Host selection by Homalodisca vitripennis: the interplay between feeding, egg maturation, egg load, and oviposition. Arthropod Plant Interact 6:351–360CrossRefGoogle Scholar
  86. Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267CrossRefPubMedGoogle Scholar
  87. Sunderland KD, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Applic 95(1):1–13CrossRefGoogle Scholar
  88. Tianzhen H, Baoming L, Guanghui T, Qing Z, Yingping X, Lirong Q (2009) Application of acoustic frequency technology to protected vegetable production (in Chinese). Trans Chin Soc Agric Eng 25(2):156–159Google Scholar
  89. Tishechkin DY (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46Google Scholar
  90. Tishechkin DY (2013) Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93(5):548–558CrossRefGoogle Scholar
  91. Vélez MJ, Brockmann J (2006) Seasonal variation in selection on male calling song in the field cricket, Gryllus rubens. Anim Behav 72(2):439–448CrossRefGoogle Scholar
  92. Vidano C (1964) Scoperta in Italia dello Scaphoideus littoralis Ball cicalina americana collegata alla “Flavescence dorée” della Vite. Ital Agric 101:1031–1049Google Scholar
  93. Vidano C (1966) Scoperta della ecologia ampelofila del cicadellide Scaphoideus littoralis Ball nella regione neartica originaria. Ann Fac Sci Agric Univ Torino 3:297–302Google Scholar
  94. Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 93–213Google Scholar
  95. Wessel A, Mühlethaler R, Hartung V, Kuštor V, Gogala M (2014) The tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha). In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 395–444Google Scholar
  96. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522CrossRefPubMedGoogle Scholar
  97. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100CrossRefPubMedGoogle Scholar
  98. Wu C-H, Elias DO (2014) Vibratory noise in anthropogenic habitats and its effect on prey detection in a web-building spider. Anim Behav 90:47–56CrossRefGoogle Scholar
  99. Žežlina I, Škvarč A, Bohinc T, Trdan S (2013) Testing the efficacy of single applications of five insecticides against Scaphoideus titanus on common grapevines. Int J Pest Manage 59(1):1–9CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Sustainable Agro-Ecosystems and Bioresources DepartmentFondazione Edmund MachSan Michele all’Adige (TN)Italy
  2. 2.Department of Organisms and Ecosystems ResearchNational Institute of BiologyLjubljanaSlovenia
  3. 3.Department of Agriculture, Food and EnvironmentUniversity of PisaPisa (PI)Italy

Personalised recommendations