Principles of IPM in Cultivated Crops and Implementation of Innovative Strategies for Sustainable Plant Protection

  • Jürgen GrossEmail author
  • Gerhard Gündermann


In this chapter, the concepts of integrated pest management (IPM) and integrated production (IP) are explained, and the most important definitions are given. The legal framework for regulation of IPM in the European Union is specified, and the general principles are explained. The EU Framework Directive requires that all EU member states develop a national action plan (NAP), which ensures that a set of eight general principles of IPM are implemented by all professional pesticide users. Along these principles, the authors present an overview on important examples for new and innovative developments and attempts in plant protection to enhance sustainable agriculture. They give short introductions in selective and biorational pesticides, anti-resistance strategies, and new methods for monitoring pest insects by semiochemicals. Furthermore, they give an overview on the diversity of nonchemical methods in pest control. These methods include mating disruption techniques mediated by semiochemicals and substrate vibrations, mass trapping, attract-and-kill techniques, the use of repellents, antifeedants and deterrents, as well as more complex push-and-pull strategies.


Integrate Pest Management Aggregation Pheromone Mating Disruption Plant Protection Product Mass Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the editors A. Rami Horowitz and Isaac Ishaaya for the invitation to write this chapter and the anonymous reviewers for their constructive comments, which helped us to improve the manuscript. We thank Annett Gummert and Silke Dachbrodt-Saaydeh (Julius Kühn-Institut, Germany) for providing literature. We are grateful to Eva M. Gross (Schriesheim, Germany) for linguistic corrections of the manuscript.


  1. Akhtar Y, Isman MB (2016) Development of semiochemicals and diatomaceous earth formulations for bed bug pest management. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, ChamGoogle Scholar
  2. Anonymous (2002) Integrated pest management for almonds. University of California, statewide IPM project, Division of Agriculture and Natural Resources, Publication 3308Google Scholar
  3. Anonymous (2013) R&D trends for chemical crop protection products and the position of the European Market. A consultancy study undertaken by Phillips McDougall Ltd., UK on behalf of European Crop Protection (ECPA), Brussels, BelgiumGoogle Scholar
  4. Barzman MS, Bertschinger L, Dachbrodt-Saaydeh S, Graf B, Jensen JE, Jorgensen LN, Kudsk P, Messéan A, Moonen AC, Ratnadass A, Sarah JL, Sattin M (2014) IPM policy, research and implementation: European initiatives. In: Peshin R, Pimentel D (eds) Integrated pest management, experiences with implementation, global overview, vol 4. Springer, London, pp415–428Google Scholar
  5. Barzman M, Bàrberi P, Birch AN, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen J, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen A-C, Ratnadass A, Ricci P, Sarah J-S, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 2015(35):1199–1215Google Scholar
  6. Blanc J (2008) Loxodonta africana. In: IUCN 2013. IUCN Red list of threatened species. Version 2013.1. Assessed on 28 Aug 2013
  7. Boller EF, Avilla J, Jörg E, Malavolta C, Wijnands F, Esbjerg P (2004) Integrated production: principles and technical guidelines, 3rd edition. IOBC WPRS Bull 27(2):1–50. ISBN 92-9067-163-5Google Scholar
  8. Charmillot P-J, Hofer D, Pasquier D (2000) Attract and kill: a new method for the control of the codling moth Cydia pomonella. Entomol Ex Appl 94:211–216CrossRefGoogle Scholar
  9. Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566. doi: 10.1007/s10340-014-0617-z CrossRefGoogle Scholar
  10. Cook SM, Khan ZR, Pickett JA (2007) The use of ‘push–pull’ strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefPubMedGoogle Scholar
  11. Dent DR (1991) Insect pest management. CAB International, WallingfordGoogle Scholar
  12. Dicke M, Sabelis MW (1988) Infochemical terminology: should it be based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  13. Eben A, Mühlethaler RC, Gross J, Hoch H (2014) First evidence of acoustic communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). J Pest Sci 88(1):87–95CrossRefGoogle Scholar
  14. El-Sayed AM (2014) The Pherobase: database of pheromones and semiochemicals. Assessed 30 Oct 2015
  15. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7(3):1–5CrossRefGoogle Scholar
  16. Fabre CCG, Hedwig B, Conduit G, Lawrence PA, Goodwin SF, Casal J (2012) Substrate-born vibratory communication during courtship in Drosophila melanogaster. Curr Biol 22:2180–2185CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fadamiro HY, Baker TC (2002) Pheromone puffs suppress mating by Plodia interpunctella and Sitotroga cerealella in an infested corn store. Entomol Ex Appl 102:239–251CrossRefGoogle Scholar
  18. Food and Agriculture Organisation of the United Nations (FAO) (2015) Assessed on 25th Oct 2015
  19. Freier B, Zornbach W (2008) Zur Qualifizierung und Weiterbildung der Berater und Trainer in den Pflanzenschutzdiensten Deutschlands. Nachrichtenbl Deut Pflanzenschutzd 60(9):205–208Google Scholar
  20. Giblin-Davis RM, Pena JE, Oehlschlager AC, Perez AL (1996) Optimization of semiochemical-based trapping of Metamasius hemipterus sericeus. J Chem Ecol 22:1389–1410CrossRefPubMedGoogle Scholar
  21. Greif A, Rid M, Gross J, Hoffmann C (2015) Guiding tour: M-Ovicard – a decision support system for integrated pest management of grapevine moths. IOBC Working Group meeting “Integrated Protection and Production in Viticulture”, Vienna, AustriaGoogle Scholar
  22. Gross J (2013) Drugs for bugs: the potential of infochemicals mediating insect-plant-microbe interactions for plant protection and medicine. In: Gang DR (ed) Phytochemicals, plant growth, and the environment, vol 42, Recent advances in phytochemistry. Springer, New York, pp 79–93CrossRefGoogle Scholar
  23. Gross EM, McRobb R, Gross J (2016) Growing of alternative crops reduces crop losses due to elephants. J Pest Sci. 89:497–506. doi: 10.1007/s10340-015-0699-2.CrossRefGoogle Scholar
  24. Guédot C, Millar JG, Horton DR, Landolt PJ (2009) Identification of a sex attractant pheromone for male winterform pear psylla, Cacopsylla pyricola. J Chem Ecol 35:1437–1447CrossRefPubMedGoogle Scholar
  25. Gummert A, Ladewig E, Märländer B (2012) Guidelines for integrated pest management in sugar beet cultivation—weed control. J Cultiv Plants 64(4):105–111Google Scholar
  26. Gündermann G (2014) Principles of IPM in cultivated crops. Talk given at 10th European Congress of Entomology, University of York, 3–8 AugustGoogle Scholar
  27. Harari A (2016) Disruption of insect reproductive systems as a tool in pest control. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, ChamGoogle Scholar
  28. Hommel B, Dachbrodt-Saaydeh S, Freier B (2014) Experiences with implementation and adoption of integrated plant protection (IPP) in Germany. In: Peshin R, Pimentel D (eds) Integrated pest management. Springer, Dordrecht. doi: 10.1007/978-94-007-7802-3_18 Google Scholar
  29. Huang J, Gut LJ, Miller JR (2013) Separating the attractant from the toxicant improves attract-and-kill of codling moth (Lepidoptera: Tortricidae). J Econ Entomol 106:2144–2150CrossRefPubMedGoogle Scholar
  30. Huang J, Gut LJ, Grieshop M (2015) Development of a new attract-and-kill technology for Oriental fruit moth control using insecticide impregnated fabric. Entomol Ex Appl 154:102–109. doi: 10.1111/eea.12259 CrossRefGoogle Scholar
  31. Jakob WL, Bevier GA (1969) Application of ovitraps in the US Aedes aegypti eradication program. Mosq News 29:55–62Google Scholar
  32. Khan ZR, Midega CAO, Bruce TJA, Hooper AM, Picket JA (2010) Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. J Exp Bot 61(15):4185–4196CrossRefPubMedGoogle Scholar
  33. Knight AL, Light DM (2001) Attractants from ‘Bartlett’ pear for codling moth, Cydia pomonella (L.), larvae. Naturwissenschaften 88:339–342CrossRefPubMedGoogle Scholar
  34. Knight AL, Potting RPJ, Light DM (2002) Modeling the impact of a sex pheromone/kairomone attracticide for management of codling moth (Cydia pomonella). Act Horticult 584:215–220CrossRefGoogle Scholar
  35. Kudsk P, Jensen JE (2014) Experiences with implementation and adoption of integrated pest management in Denmark. In: Peshin R, Pimentel D (eds) Integrated pest management, experiences with implementation, global overview, vol 4. Springer, London, pp 467–486Google Scholar
  36. Lamichhane JR, Arendseb W, Dachbrodt-Saaydeh S, Kudsk P, Roman JC, van Bijsterveldt-Gels JEM, Wick M, Messéana A (2015) Challenges and opportunities for integrated pest management in Europe: a telling example of minor uses. Crop Prot 74:42–47CrossRefGoogle Scholar
  37. Leskey TC, Hamilton GC, Nielsen AL, Polk DF, Rodriguez–Saona C, Bergh JC, Herbert DA, Kuhar TP, Pfeiffer D, Dively G et al (2012) Pest status of the brown marmorated stink bug, Halyomorpha halys, in the USA. Outlooks Pest Manag 23:218–226CrossRefGoogle Scholar
  38. Light DM (2007) Experimental use of the micro-encapsulated pear ester kairomone for control of codling moth, Cydia pomonella (L.), in walnuts. IOBC Bull 30(4):133–14Google Scholar
  39. Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G, Roitman J, Campbell BC (2001) A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338CrossRefPubMedGoogle Scholar
  40. Lubanga UK, Guédot C, Percy DM, Steinbauer MJ (2014) Semiochemical and vibrational cues and signals mediating mate finding and courtship in Psylloidea (Hemiptera): a synthesis. Insects 5:577–595CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mayer CJ, Vilcinskas A, Gross J (2008a) Phytopathogen lures its insect vector by altering host plant odor. J Chem Ecol 34:1045–1049CrossRefPubMedGoogle Scholar
  42. Mayer CJ, Vilcinskas A, Gross J (2008b) Pathogen-induced release of plant allomone manipulates vector insect behavior. J Chem Ecol 34:1518–1522CrossRefPubMedGoogle Scholar
  43. Mayer CJ, Jarausch B, Jarausch W, Jelkmann W, Vilcinskas A, Gross J (2009) Cacopsylla melanoneura has no relevance as vector of apple proliferation in Germany. Phytopathology 99:729–738CrossRefPubMedGoogle Scholar
  44. Mayer CJ, Vilcinskas A, Gross J (2011) Chemically mediated multi-trophic interactions in a plant-insect vector-phytoplasma system compared with a partially nonvector species. Agricult Forest Entomol 13:25–35CrossRefGoogle Scholar
  45. McBrien HL, Millar JG, Rice RE, McElfresh JS, Cullen E, Zalom FG (2002) Sex attractant pheromone of the red-shouldered stink bug Thyanta pallidovirens: a pheromone blend with multiple redundant components. J Chem Ecol 28:1797–81 CrossRefPubMedGoogle Scholar
  46. Millar JG, Daane KM, McElfresh JS, Moreira JA, Malakar-Kuenen R, Guillen M, Bentley WJ (2002) Development and optimization of methods for using sex pheromone for monitoring the mealybug Planococcus ficus (Homoptera: Pseudococcidae) in California vineyards. J Econ Entomol 95:706–714CrossRefPubMedGoogle Scholar
  47. Miller JR, McGhee PS, Siegert PY, Adams CG, Huang J et al (2010) General principles of attraction and competitive attraction as revealed by large cage studies of moths responding to sex pheromones. Proc Natl Acad Sci U S A 107:22–27CrossRefPubMedGoogle Scholar
  48. Miller JR, Adams CG, Weston PA, Schenker JH (2015) Trapping of small organisms moving randomly. Springer, Cham. doi: 10.1007/978-3-319-12994-5
  49. Oehlschlager AC, Chinchilla C, Castillo G, Gonzalez L (2002) Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Flor Entomol 85:507–513CrossRefGoogle Scholar
  50. PestinfoWiki Contributors (2015) ‘Main Page’, PestinfoWiki. Available at Accessed 30 Oct 2015
  51. Peters M, Freier B, Holst F, Goltermann S, Büttner C (2015) Checklist for evaluating the implementation of integrated plant protection on demonstration farms for integrated plant protection in arable crops used in Mecklenburg-Western Pomerania. Ges Pflan 67:33–44CrossRefGoogle Scholar
  52. Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Developing a bioacoustic method for mating disruption of a leafhopper pest in grapevine. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, ChamGoogle Scholar
  53. Racca P, Kleinhenz B, Zeuner T, Keil B, Tschöpe B, Jung J (2011) Decision support systems in agriculture: administration of weather data, use of geographic information systems (GIS) and validation methods in crop protection warning service. In: Jao C (ed) Efficient decision support systems-practice and challenges from current to future. InTech, Rijeka, pp 331–354Google Scholar
  54. Rid M, Mesca C, Ayasse M, Gross J (2016) Apple proliferation phytoplasma influences the pattern of plant volatiles emitted depending on pathogen virulence. Front Ecol Evol 3:152. doi: 10.3389/fevo.2015.00152 CrossRefGoogle Scholar
  55. Schuster, Stansly (2015) Assessed 25 Oct 2015
  56. Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knadsen M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357CrossRefPubMedGoogle Scholar
  57. Stern VM, Smith RF, Van Den Bosch R, Hagen KS (1959) The integrated control concept. Hilgardia 29:81–101CrossRefGoogle Scholar
  58. The European Parliament and the council of the European Union (2009) DIRECTIVE 2009/128/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Official Journal of the European Union L 309/71.
  59. Vogt H, Baufeld P, Gross J, Köppler K, Hoffmann C (2012) Drosophila suzukii: eine neue Bedrohung für den Europäischen Obst- und Weinbau. Bericht über eine internationale Tagung in Trient, 2. Dezember 2011. J Kulturpfla 64:68–72Google Scholar
  60. Wallingford AK, Hesler SP, Cha DH, Loeb GM (2015) Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Man Sci. doi: 10.1002/ps.4040 Google Scholar
  61. Weintraub PG, Gross J (2013) Capturing insect vectors of phytoplasmas. In: Dickinson MJ, Hodgetts J (eds) Phytoplasma: methods and protocols, vol 938, Methods in molecular biology. Springer, New York, pp 61–72CrossRefGoogle Scholar
  62. Welter SC, Pickel C, Millar J, Cave F, Van Steenwyk RA, Dunley J (2005) Pheromone mating disruption offers selective management options for key pests. Calif Agric 59:16–22CrossRefGoogle Scholar
  63. Wise JC (2016) Enhancing resistance management and performance of biorational insecticides with novel delivery systems in tree fruit IPM. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, ChamGoogle Scholar
  64. Wise JC, Whalon M (2009) A systems approach to IPM integration, ecological assessment and resistance management in tree fruit orchards. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests: application and resistance management. Springer, Dordrecht, pp325–345CrossRefGoogle Scholar
  65. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Federal Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and ViticultureJulius Kühn-InstitutDossenheimGermany
  2. 2.Federal Institute for Cultivated PlantsJulius Kühn-InstitutBraunschweigGermany

Personalised recommendations