Advertisement

Projectile Fragmentation and Fission

  • Michael ThoennessenEmail author
Chapter

Abstract

Currently the most productive methods to produce and identify new isotopes are projectile fragmentation and projectile fission. Due to the high beam energy, the fragments are forward focused and can be separated with fragment separators located at zero degree. By measuring the magnetic rigidity, velocity and energy loss, the isotopes can be identified on an event-by-event basis. The discoveries of the more than 500 isotopes discovered with this technique are described.

Keywords

Fragment Separator High Beam Energy Projectile Fragmentation Alpha Magnetic Spectrometer National Superconducting Cyclotron Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.M. Poskanzer et al., Phys. Rev. Lett. 17, 1271 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Poskanzer et al., Phys. Lett. B 27, 414 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    A.G. Artukh et al., Phys. Lett. B 31, 129 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    T.J.M. Symons et al., Phys. Rev. Lett. 42, 40 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    G.D. Westfall et al., Phys. Rev. Lett. 43, 1859 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Stevenson, P.B. Price, Phys. Rev. C 24, 2102 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Musser, J.D. Stevenson, Phys. Rev. Lett. 53, 2544 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    M. Langevin et al., Phys. Lett. B 150, 71 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    D. Guillemaud-Mueller et al., Z. Phys. A 322, 415 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    F. Pougheon et al., Europhys. Lett. 2, 505 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    D. Guillemaud-Mueller et al., Z. Phys. A 332, 189 (1989)ADSGoogle Scholar
  12. 12.
    D. Guillemaud-Mueller et al., Phys. Rev. C 41, 937 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lewitowicz et al., Z. Phys. A 335, 117 (1990)ADSGoogle Scholar
  14. 14.
    M. Weber et al., Z. Phys. A 343, 67 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    H. Sakurai et al., Phys. Rev. C 54, R2802 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    H. Sakurai et al., Phys. Lett. B 448, 180 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    M. Notani et al., Phys. Lett. B 542, 49 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    S. Grévy et al., Phys. Lett. B 594, 252 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    O.B. Tarasov et al., Phys. Rev. C 75, 064613 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    T. Baumann et al., Nature 449, 1022 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    O.B. Tarasov et al., Phys. Rev. Lett. 102, 142501 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    O.B. Tarasov et al., Phys. Rev. C 87, 054612 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    P. Auger et al., Z. Phys. A 289, 255 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    W. Benenson et al., Phys. Lett. B 162, 87 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    W. Zhan et al., Nouvelles du GANIL No. 25, April 1988; and to be publishedGoogle Scholar
  26. 26.
    H. Sakurai et al., Nucl. Phys. A 616, 311c (1997)ADSCrossRefGoogle Scholar
  27. 27.
    M. Bernas et al., Phys. Lett. B 331, 19 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    C. Engelmann et al., Z. Phys. A 352, 351 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    M. Bernas et al., Phys. Lett. B 415, 111 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ohnishi et al., J. Phys. Soc. Jpn. 77, 083201 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    T. Ohnishi et al., J. Phys. Soc. Jpn. 79, 073201 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    H. Wang et al., Chin. Phys. Lett. 30, 042501 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Z.Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    F. Ameil et al., GSI Sci. Rep. 94–1, 25 (1995)Google Scholar
  37. 37.
    F. Ameil et al., in Proceedings of the International Conference on Exotic Nuclei and Atomic Masses, Arles, France, 19–23 June 1995, p. 537Google Scholar
  38. 38.
    F. Ameil et al., Eur. Phys. J. A 1, 275 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    S. Czajkowski et al., in Proceedings of the International Conference on Exotic Nuclei, Atomic Masses, ENAM’95, Arles, France, 1995, Editions Frontieres (1996), p. 553Google Scholar
  40. 40.
    M. Bernas et al., Nucl. Phys. A 616, 352c (1997)ADSCrossRefGoogle Scholar
  41. 41.
    J. Van Schelt et al., Phys. Rev. C 85, 045805 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    M. Pfützner et al., Phys. Lett. B 444, 32 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    J. Benlliure et al., Nucl. Phys. A 660, 87 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    J. Taieb et al., Nucl. Phys. A 724, 413 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt, Nucl. Instrum. Meth. A 589, 472 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    S.J. Steer et al., Phys. Rev. C 78, 061302 (2008)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    N. Alkhomashi et al., Phys. Rev. C 80, 064308 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    L. Chen et al., Phys. Lett. B 691, 234 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    H. Alvarez-Pol et al., Phys. Rev. C 82, 041602 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    A.I. Morales et al., Phys. Rev. C 84, 011601 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    S.J. Steer et al., Phys. Rev. C 84, 044313 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    P. Van Duppen et al., Nucl. Instrum. Meth. B 134, 267 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    K. Rykaczewski et al., AIP Conf. Proc. 455, 581 (1998)ADSGoogle Scholar
  54. 54.
    T. Kurtukain-Nieto, Production and \(\beta \) decay half-lives of heavy neutron-rich nuclei approaching the stellar nucleosynthesis r-process path around A = 195. Ph.D. Thesis, Universidade de Santiago de Compostela, 2007, http://fpsalmon.usc.es/PhDthesis/PhD_teresa.pdf
  55. 55.
    T. Kurtukian-Nieto et al., Phys. Rev. C 89, 024616 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    T. Kurtukian-Nieto et al., AIP Conf. Proc. 802, 73 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    J. Benlliure et al., Eur. Phys. J. ST 150, 309 (2007)CrossRefGoogle Scholar
  58. 58.
    T. Kurtukian-Nieto et al., Pos(NIC IX) 008 (2007)Google Scholar
  59. 59.
    T. Kurtukian-Nieto et al., in Proceedings of the International Conference on Nuclear Data for Science and Technology, 2007, doi: 10.1051/ndata:07685
  60. 60.
    T. Kurtukian-Nieto et al., Nucl. Phys. A 827, 587c (2009)ADSCrossRefGoogle Scholar
  61. 61.
    T. Kurtukian-Nieto, J. Phys. Conf. Ser. 202, 012012 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    J. Benlliure et al., Pos(NIC XI) 084 (2010)Google Scholar
  63. 63.
    T. Kurtukian-Nieto et al., arXiv:0711.0101 (2007)
  64. 64.
    J. Benlliure et al., arXiv:1004.0265 (2010)
  65. 65.
    M. Langevin et al., Nucl. Phys. A 455, 149 (1986)ADSCrossRefGoogle Scholar
  66. 66.
    F. Pougheon et al., Z. Phys. A 327, 17 (1987)ADSGoogle Scholar
  67. 67.
    M.G. Saint-Laurent et al., Phys. Rev. Lett. 59, 33 (1987)ADSCrossRefGoogle Scholar
  68. 68.
    C. Détraz et al., Nucl. Phys. A 519, 529 (1990)ADSCrossRefGoogle Scholar
  69. 69.
    M.F. Mohar et al., Phys. Rev. Lett. 66, 1571 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    V. Borrel et al., Z. Phys. A 344, 135 (1992)ADSCrossRefGoogle Scholar
  71. 71.
    S.J. Yennello et al., Phys. Rev. C 46, 2620 (1992)ADSCrossRefGoogle Scholar
  72. 72.
    J.A. Winger et al., Phys. Rev. C 48, 3097 (1993)ADSCrossRefGoogle Scholar
  73. 73.
    M. Hencheck et al., Phys. Rev. C 50, 2219 (1994)ADSCrossRefGoogle Scholar
  74. 74.
    R. Schneider et al., Z. Phys. A 348, 241 (1994)ADSCrossRefGoogle Scholar
  75. 75.
    B. Blank et al., Phys. Rev. C 50, 2398 (1994)ADSCrossRefGoogle Scholar
  76. 76.
    M. Lewitowicz et al., Phys. Lett. B 332, 20 (1994)ADSCrossRefGoogle Scholar
  77. 77.
    K. Rykaczewski et al., Phys. Rev. C 52, 2310 (1995)ADSCrossRefGoogle Scholar
  78. 78.
    B. Blank et al., Phys. Rev. Lett. 74, 4611 (1995)ADSCrossRefGoogle Scholar
  79. 79.
    B. Blank et al., Phys. Rev. Lett. 77, 2893 (1996)ADSCrossRefGoogle Scholar
  80. 80.
    Z. Janas et al., Phys. Rev. Lett. 82, 295 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    J. Giovinazzo et al., Eur. Phys. J. A 11, 247 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    P. Kienle et al., Prog. Part. Nucl. Phys. 46, 73 (2001)ADSCrossRefGoogle Scholar
  83. 83.
    Z. Liu et al., Nucl. Instrum. Meth. A 543, 591 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    B. Blank et al., Phys. Rev. Lett. 94, 232501 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    A. Stolz et al., Phys. Lett. B 627, 32 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    D. Bazin et al., Phys. Rev. Lett. 101, 252501 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    C.B. Hinke et al., Nature 486, 341 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    A.A. Ciemny et al., Phys. Rev. C 92, 014622 (2015)ADSCrossRefGoogle Scholar
  89. 89.
    R. Krücken, A.I.P. Conf, Proc. 1072, 52 (2008)Google Scholar
  90. 90.
    K. Straub, Ph.D. thesis, Zerfallseigenschaften von Nukliden in der Umbebung von \(^{100}\) Sn, Technical University Munich, unpublished (2011)Google Scholar
  91. 91.
    M. Lewitowicz et al., Nouvelles de GANIL 48, 7 (1993)Google Scholar
  92. 92.
    R. B. Firestone et al., Table of Isotopes, 8th edn. (Wiley, New Jersey, 1996)Google Scholar
  93. 93.
    T. Faestermann et al., in Proceedings of the 5th International Conference Nuclei Far from Stability, Rosseau Lake, Canada, K12 (1987)Google Scholar
  94. 94.
    http://www.nndc.bnl.gov/ensdf/ ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science)
  95. 95.
    H. Miyatake et al., Inst. Nucl. Study, Univ. Tokyo, Ann. Rept., 1986, p. 37 (1987)Google Scholar
  96. 96.
    C.B. Hinke, Ph.D. Thesis, Spectroscopy of the Doubly Magic Nucleus \(^{100}\) Sn and its Decay, Technical University Munich, unpublished (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations