Skip to main content

A Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9651))

Abstract

Multi-label classification targets the prediction of multiple interdependent and non-exclusive binary target variables. Transformation-based algorithms transform the data set such that regular single-label algorithms can be applied to the problem. A special type of transformation-based classifiers are label compression methods, which compress the labels and then mostly use single label classifiers to predict the compressed labels. So far, there are no compression-based algorithms that follow a problem transformation approach and address non-linear dependencies in the labels. In this paper, we propose a new algorithm, called Maniac (Multi-lAbel classificatioN usIng AutoenCoders), which extracts the non-linear dependencies by compressing the labels using autoencoders. We adapt the training process of autoencoders in a way to make them more suitable for a parameter optimization in the context of this algorithm. The method is evaluated on eight standard multi-label data sets. Experiments show that despite not producing a good ranking, Maniac generates a particularly good bipartition of the labels into positives and negatives. This is caused by rather strong predictions with either really high or low probability. Additionally, the algorithm seems to perform better given more labels and a higher label cardinality in the data set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that ECCs should still be considered as a strong baseline method as confirmed by a quite recent extensive experimental comparison [10].

  2. 2.

    A yet different family of methods transforms larger multi-label problems into smaller multi-label methods, like for instance HOMER [20] or RAKEL [22].

  3. 3.

    The implementation is available at https://github.com/kramerlab/maniac, as well as directly integrated in Meka http://meka.sourceforge.net/.

  4. 4.

    It should be noted that, as we train the autoencoders on the labels, this could be understood as supervised learning. Nevertheless, for the training of the autoencoders, no additional target variable is used, and the labels are not treated as target variables for this step, hence this is still unsupervised training.

  5. 5.

    Due to space limitations, we moved a more detailed version of this section, which is more technically involved, to https://github.com/kramerlab/maniac/blob/master/docs/supplementary.pdf.

  6. 6.

    As the authors of [8] did not share their code for experimental comparisons, and we were not able to reproduce the published results, we did not compare to this algorithm.

  7. 7.

    The autoencoder implementation is available at https://github.com/kramerlab/autoencoder.

  8. 8.

    Due to space limitations, we give only representative results, the full results are given at https://github.com/kramerlab/maniac/blob/master/docs/supplementary.pdf.

  9. 9.

    We used only a single core of an Intel ® Core™i7-4770 K CPU – 3.50 GHz Processor and 4 GB of RAM.

References

  1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  2. Clare, A.J., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 42. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.P.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, pp. 681–687 (2001)

    Google Scholar 

  5. Gonçalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 469–476. IEEE (2013)

    Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Li, X., Guo, Y.: Bi-directional representation learning for multi-label classification. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS, vol. 8725, pp. 209–224. Springer, Heidelberg (2014)

    Google Scholar 

  9. Li, X., Zhao, F., Guo, Y.: Conditional restricted Boltzmann machines for multi-label learning with incomplete labels. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, pp. 635–643 (2015)

    Google Scholar 

  10. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  11. Nadeau, C., Bengio, Y.: Inference for the generalization error. Mach. Learn. 52(3), 239–281 (2003)

    Article  MATH  Google Scholar 

  12. Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification — revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS, vol. 8725, pp. 437–452. Springer, Heidelberg (2014)

    Google Scholar 

  13. Pestian, J.P., Brew, C., Matykiewicz, P., Hovermale, D., Johnson, N., Cohen, K.B., Duch, W.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104. Association for Computational Linguistics (2007)

    Google Scholar 

  14. Read, J., Hollmén, J.: A deep interpretation of classifier chains. In: Blockeel, H., van Leeuwen, M., Vinciotti, V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 251–262. Springer, Heidelberg (2014)

    Google Scholar 

  15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  16. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-label classification methods for multi-target regression (2012). arXiv preprint arxiv:1211.6581

  17. Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: Proceedings of the Ninth International Conference on Music Information Retrieval, vol. 8, pp. 325–330 (2008)

    Google Scholar 

  19. Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the 1st International Workshop on Learning from Multi-Label Data, pp. 101–116 (2009)

    Google Scholar 

  20. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of the ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD 2008), pp. 30–44 (2008)

    Google Scholar 

  21. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data mining and knowledge discovery handbook, pp. 667–685. Springer, Heidelberg (2010)

    Google Scholar 

  22. Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  24. Wicker, J., Pfahringer, B., Kramer, S.: Multi-label classification using Boolean matrix decomposition. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 179–186. ACM (2012)

    Google Scholar 

  25. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wicker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wicker, J., Tyukin, A., Kramer, S. (2016). A Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31753-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31752-6

  • Online ISBN: 978-3-319-31753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics