Advertisement

Secure k-NN Query on Encrypted Cloud Data with Limited Key-Disclosure and Offline Data Owner

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9652)

Abstract

Recently, many schemes have been proposed to support k-nearest neighbors (k-NN) query on encrypted cloud data. However, existing approaches either assume query users are fully-trusted, or require data owner to be online all the time. Query users in fully-trusted assumption can access the key to encrypt/decrypt outsourced data, thus, untrusted cloud server can completely break the data upon obtaining the key from any untrustworthy query user. The online requirement introduces much cost to data owner. This paper presents a new scheme to support k-NN query on encrypted cloud database while preserving the privacy of database and query points. Our proposed approach only discloses limited information about the key to query users, and does not require an online data owner. Theoretical analysis and extensive experiments confirm the security and efficiency of our scheme.

Keywords

Cloud computing Privacy k-nearest neighbors Query 

Notes

Acknowledgments

This work is partly supported by the Fundamental Research Funds for the Central Universities (NZ2015108), Natural Science Foundation of Jiangsu province (BK20150760), the China Postdoctoral Science Foundation funded project (2015M571752), Jiangsu province postdoctoral research funds (1402033C), and NSFC (61472470, 61370224).

References

  1. 1.
    Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional range queries over outsourced data. VLDB J. 21(3), 333–358 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang, C., Cao, N., Li, J., Ren, K., Lou, W.J.: Secure ranked keyword search over encrypted cloud data. In: Proceedings of the 30th IEEE ICDCS, pp. 253–262 (2010)Google Scholar
  3. 3.
    Cao, N., Yang, Z., Wang, C., Ren, K., Lou, W.J.: Privacy-preserving query over encrypted graph-structured data in cloud computing. In: Proceedings of the 31st IEEE ICDCS, pp. 393–402 (2011)Google Scholar
  4. 4.
    Li, M., Yu, S.C., Cao, N., Lou, W.J.: Authorized private keyword search over encrypted data in cloud computing. In: Proceedings of the 31st IEEE ICDCS, pp. 383–392 (2011)Google Scholar
  5. 5.
    Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model. In: Proceedings of DBSEC, pp. 89–103 (2006)Google Scholar
  6. 6.
    Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional range query over encrypted data. In: IEEE Symposium on Security and Privacy, pp. 350–364 (2007)Google Scholar
  7. 7.
    Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving queries on encrypted data. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 479–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Yiu, M.L., Assent, I., Jensen, C.S., Kalnis, P.: Outsourced similarity search on metric data assets. IEEE Trans. Knowl. Data Eng. 24(2), 338–352 (2012)CrossRefGoogle Scholar
  9. 9.
    Wong, W.J., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN computation on encrypted databases. In: Proceedings of the 35th SIGMOD, pp. 139–152 (2009)Google Scholar
  10. 10.
    Hu, H.B., Xu, J.L., Ren, C.S., Choi, B.: Processing private queries over untrusted data cloud through privacy homomorphism. In: Proceedings of the 27th IEEE ICDE, pp. 601–612 (2011)Google Scholar
  11. 11.
    Xu, H.Q., Guo, S.M., Chen, K.K.: Building confidential and efficient query services in the cloud with rasp data perturbation. IEEE Trans. Knowl. Data Eng. 26(2), 322 (2014)CrossRefGoogle Scholar
  12. 12.
    Yao, B., Li, F.F., Xiao, X.K.: Secure nearest neighbor revisited. In: Proceedings of the 29th IEEE ICDE, pp. 733–744 (2013)Google Scholar
  13. 13.
    Zhu, Y.W., Xu, R., Takagi, T.: Secure k-NN computation on encrypted cloud data without sharing key with query users. In: ACM Workshop on Security in Cloud Computing, pp. 55–60 (2013)Google Scholar
  14. 14.
    Zhu, Y.W., Xu, R., Takagi, T.: Secure k-NN query on encrypted cloud database without key-sharing. Int. J. Electron. Secur. Digit. Forensics 5(3/4), 201–217 (2013)CrossRefGoogle Scholar
  15. 15.
    Liu, K., Giannella, C.M., Kargupta, H.: An attacker’s view of distance preserving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Zhu, Y.W., Huang, Z.Q., Takagi, T.: Secure and controllable k-NN query over encrypted cloud data with key confidentiality. J. Parallel Distrib. Comput. 89, 1 (2016). doi: 10.1016/j.jpdc.2015.11.004 CrossRefGoogle Scholar
  17. 17.
    Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over encrypted data in outsourced environments. In: Proceedings of IEEE 30th International Conference on Data Engineering, pp. 664–675 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ComputerNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Collaborative Innovation Center of Novel Software Technology and IndustrializationNanjingChina

Personalised recommendations