Skip to main content

Denoising Time Series by Way of a Flexible Model for Phase Space Reconstruction

  • Conference paper
  • First Online:
  • 3026 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9652))

Abstract

We present a denoising technique in the domain of time series data that presumes a model for the uncorrupted underlying signal rather than a model for noise. Specifically, we show how the non-linear reconstruction of the underlying dynamical system by way of time delay embedding yields a new solution for denoising where the underlying dynamics is assumed to be highly non-linear yet low-dimensional. The model for the underlying data is recovered using a non-parametric Bayesian approach and is therefore very flexible. The proposed technique first clusters the reconstructed phase space through a Dirichlet Process Mixture of Exponential density, an infinite mixture model. Phase Space Reconstruction is accomplished by time delay embedding in the framework of Taken’s Embedding Theorem with the underlying dimension being determined by the False Neighborhood method. Next, an Infinite Mixtures of Linear Regression via Dirichlet Process is used to non-linearly map the phase space data points to their respective temporally subsequent points in the phase space. Finally, a convex optimization based approach is used to restructure the dynamics by perturbing the phase space points to create the new denoised time series. We find that this method yields significantly better performance in noise reduction, power spectrum analysis and prediction accuracy of the phase space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham, R., Shaw, C.: Dynamics: The Geometry of Behavior. Ariel Press, Santa Cruz (1985)

    Google Scholar 

  2. Badii, R., Broggi, G., Derighetti, B., Ravani, M., Ciliberto, S., Politi, A., Rubio, M.: Dimension increase in filtered chaotic signals. Phys. Rev. Lett. 60, 979–982 (1988)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. David, L., Donoho, J.: De-noising by soft-thresholding. IEEE Trans. Inf. Theor. 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elshorbagy, A., Panu, U.: Noise reduction in chaotic hydrologic time series: facts and doubts. J. Hydrol. 256(34), 147–165 (2002)

    Article  Google Scholar 

  6. Escobar, D.M., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577–588 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferguson, T.: A bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gershenfeld, N., Weigend, A.: Time Series Prediction: Forecasting the Future and Under-standing the Past. Addison-Wesley, Reading (1994)

    Google Scholar 

  9. Grassberger, P., Schreiber, T., Schaffrath, C.: Non-linear time sequence analysis. Int. J. Bifurcat. Chaos 1(3), 521–547 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.A.: Strange attractors that are not chaotic. Physica D 13(1), 261–268 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  12. Kostelich, E.J., Yorke, J.A.: Noise reduction: Finding the simplest dynamical system consistent with the data. Phys. D 41(2), 183–196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  14. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inform. Theor. 38(2), 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitschke, F., Moller, M., Lange, W.: Measuring filtered chaotic signals. Phys. Rev. A 37(11), 4518–4521 (1988)

    Article  Google Scholar 

  16. Pol, B.V.D.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710 (1920)

    Google Scholar 

  17. Rossler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  Google Scholar 

  18. Ghosal, S., Ghosh, J.K., Ramamoorthi, R.V.: Posterior consistency of dirichlet mixtures in density estimation. Ann. Stat. 27, 143–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sethuraman, J.: A constructive definition of dirichlet priors. Statistica Sinica 4, 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Site, G., Ramakrishnan, A.G.: Wavelet domain nonlinear filtering for evoked potential signal enhancement. Comput. Biomed. Res. 33(3), 431–446 (2000)

    Article  Google Scholar 

  21. Takens, F.: Dynamical systems and turbulence, warwick 1980. In: Rand, D., Young, L.S. (eds.) Detecting strange attractors in turbulence, pp. 366–381. Springer, Heidelberg (1981)

    Google Scholar 

  22. Tokdar, S.T.: Posterior consistency of dirichlet location-scale mixture of normals in density estimation and regression. Sankhya: Indian J. Stat. 68(1), 90–110 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Lam, J., Liu, X.: Filtering for a class of nonlinear discrete-time stochastic systems with state delays. J. Comput. Appl. Math. 201(1), 153–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. West, M.: http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

  25. Zhang, L., Bao, P., Pan, Q.: Threshold analysis in wavelet-based denoising. Electron. Lett. 37(24), 1485–1486 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhazul Islam Sk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sk, M.I., Banerjee, A. (2016). Denoising Time Series by Way of a Flexible Model for Phase Space Reconstruction. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9652. Springer, Cham. https://doi.org/10.1007/978-3-319-31750-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31750-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31749-6

  • Online ISBN: 978-3-319-31750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics