A Mechanistic Study of lncRNA Fendrr Regulation of FoxF1 Lung Cancer Tumor Supressor

  • Carmen NavarroEmail author
  • Carlos Cano
  • Marta Cuadros
  • Antonio Herrera-Merchan
  • Miguel Molina
  • Armando Blanco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9656)


Long non-coding RNAs are known to play multiple roles in the complex machinery of the cell. However, their recent addition to genomic research has increased the complexity of gene expression analyses. In this work, we perform a computational study that aims to contribute to the current understanding of the mechanisms that underlie the experimentally suggested interaction between the lncRNA Fendrr and FoxF1 lung cancer tumor suppressor in carcinogenesis. Results suggest that there exists indeed a multi-level interaction between Fendrr and FoxF1 promoter region, both direct via RNA-DNA:DNA triplex domain formation or mediated by proteins that interact simultaneously with the promoter region of FoxF1 and Fendrr transcripts. Moreover, the applied computational methodology can serve as a pipeline to process any candidate lncRNA-gene pair of interest and obtain putative sources of lncRNA-gene interaction.


lncRNAs Gene regulation Computational motif finding Data integration DNA-lncRNA interaction 



This work has been funded as part of projects PI-0710-2013 of J. A., Sevilla and TIN2013-41990-R of DGICT, Madrid and from FEDER. C. Navarro’s work is funded as part of a FPU grant by the Spanish Ministry of Education, Culture and Sports.


  1. 1.
    Geisler, S., Coller, J.: RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14(11), 699–712 (2013)CrossRefGoogle Scholar
  2. 2.
    Wapinski, O., Chang, H.Y.: Long noncoding RNAs and human disease. Trends Cell Biol. 21(6), 354–361 (2011)CrossRefGoogle Scholar
  3. 3.
    Szafranski, P., Dharmadhikari, A.V., Brosens, E., Gurha, P., Kołodziejska, K.E., Zhishuo, O., Dittwald, P., Majewski, T., Mohan, K.N., Chen, B., et al.: Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 23(1), 23–33 (2013)CrossRefGoogle Scholar
  4. 4.
    Cabili, M.N., Dunagin, M.C., McClanahan, P.D., Biaesch, A., Padovan-Merhar, O., Regev, A., Rinn, J.L., Raj, A.: Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16(1), 20 (2015)CrossRefGoogle Scholar
  5. 5.
    Grote, P., Herrmann, B.G.: The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10(10), 1579–1585 (2013)CrossRefGoogle Scholar
  6. 6.
    Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D.J., Luscombe, N.M., Ule, J.: iCLIP-transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp.: JoVE 50, e2638 (2011)Google Scholar
  7. 7.
    Kudla, G., Granneman, S., Hahn, D., Beggs, J.D., Tollervey, D.: Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Nat. Acad. Sci. 108(24), 10010–10015 (2011)CrossRefGoogle Scholar
  8. 8.
    Darnell, R.: CLIP (Cross-Linking and Immunoprecipitation) identification of RNAs bound by a specific protein. Cold Spring Harb. Protoc. 2012(11), pdb-prot072132 (2012)CrossRefGoogle Scholar
  9. 9.
    Danan, C., Manickavel, S., Hafner, M.: A method for Transcriptome-wide identification of RNA binding protein interaction sites. In: Dassi, E. (ed.) Post-Transcriptional Gene Regulation. MMB, vol. 1358, pp. 153–173. Springer, New York (2016)CrossRefGoogle Scholar
  10. 10.
    Simon, M.D., Wang, C.I., Kharchenko, P.V., West, J.A., Chapman, B.A., Alekseyenko, A.A., Borowsky, M.L., Kuroda, M.I., Kingston, R.E.: The genomic binding sites of a noncoding RNA. Proc. Nat. Acad. Sci. 108(51), 20497–20502 (2011)CrossRefGoogle Scholar
  11. 11.
    Hanzelmann, S., Kuo, C.C., Kalwa, M., Wagner, W., Costa, I.G.: Triplex domain finder: detection of triple helix binding domains in long non-coding RNAs (2015). bioRxiv 020297Google Scholar
  12. 12.
    Lee, N., Steitz, J.A.: Noncoding RNA-guided recruitment of transcription factors: a prevalent but undocumented mechanism? BioEssays 37(9), 936–941 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, K.C., Chang, H.Y.: Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6), 904–914 (2011)CrossRefGoogle Scholar
  14. 14.
    Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., Luscombe, N.M.: A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10(4), 252–263 (2009)CrossRefGoogle Scholar
  15. 15.
    Buske, F.A., Mattick, J.S., Bailey, T.L.: Potential in vivo roles of nucleic acid triple-helices. RNA Biol. 8(3), 427–439 (2011)CrossRefGoogle Scholar
  16. 16.
    Buske, F.A., Bauer, D.C., Mattick, J.S., Bailey, T.L.: Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res. 22(7), 1372–1381 (2012)CrossRefGoogle Scholar
  17. 17.
    Johnson, R., Guigó, R.: The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7), 959–976 (2014)CrossRefGoogle Scholar
  18. 18.
    Grant, C.E., Bailey, T.L., Noble, W.S.: FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7), 1017–1018 (2011)CrossRefGoogle Scholar
  19. 19.
    Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.Y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G., Worsley-Hunt, R., Zhang, A.W., Parcy, F., Lenhard, B., Sandelin, A., Wasserman, W.W.: JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44(Database issue), D110 (2015)Google Scholar
  20. 20.
    Kulakovskiy, I.V., Medvedeva, Y.A., Schaefer, U., Kasianov, A.S., Vorontsov, I.E., Bajic, V.B., Makeev, V.J.: HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res. 41(D1), D195–D202 (2013)CrossRefGoogle Scholar
  21. 21.
    Lorenz, R., Bernhart, S.H., Zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., et al.: Viennarna package 2.0. Algorithms Mol. Biol. 6(1), 26 (2011)CrossRefGoogle Scholar
  22. 22.
    Cook, K.B., Kazan, H., Zuberi, K., Morris, Q., Hughes, T.R.: RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 39(suppl 1), D301–D308 (2011)CrossRefGoogle Scholar
  23. 23.
    Bauer, M., Trupke, J., Ringrose, L.: The quest for mammalian Polycomb response elements: are we there yet? Chromosoma, 1–26 (2015). doi: 10.1007/s00412-015-0539-4
  24. 24.
    Rosenbloom, K.R., Armstrong, J., Barber, G.P., Casper, J., Clawson, H., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M., et al.: The UCSC genome browser database: 2015 update. Nucleic Acids Res. 43(D1), D670–D681 (2015)CrossRefGoogle Scholar
  25. 25.
    Steinbiss, S., Gremme, G., Schärfer, C., Mader, M., Kurtz, S.: Annotationsketch: a genome annotation drawing library. Bioinformatics 25(4), 533–534 (2009)CrossRefGoogle Scholar
  26. 26.
    Lunde, B.M., Moore, C., Varani, G.: RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8(6), 479–490 (2007)CrossRefGoogle Scholar
  27. 27.
    Glisovic, T., Bachorik, J.L., Yong, J., Dreyfuss, G.: RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582(14), 1977–1986 (2008)CrossRefGoogle Scholar
  28. 28.
    Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al.: Gencode: the reference human genome annotation for the encode project. Genome Res. 22(9), 1760–1774 (2012)CrossRefGoogle Scholar
  29. 29.
    Ray, D., Kazan, H., Cook, K.B., Weirauch, M.T., Najafabadi, H.S., Li, X., Gueroussov, S., Albu, M., Zheng, H., Yang, A., et al.: A compendium of RNA-binding motifs for decoding gene regulation. Nature 499(7457), 172–177 (2013)CrossRefGoogle Scholar
  30. 30.
    Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., Chang, H.Y.: Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992), 689–693 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carmen Navarro
    • 1
    Email author
  • Carlos Cano
    • 1
  • Marta Cuadros
    • 2
  • Antonio Herrera-Merchan
    • 3
  • Miguel Molina
    • 4
  • Armando Blanco
    • 1
  1. 1.Department of Computer Science and AIUniversity of GranadaGranadaSpain
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of GranadaGranadaSpain
  3. 3.GENyO, Centre for Genomics and Oncological Research: PfizerUniversity of Granada, Andalusian Regional GovernmentGranadaSpain
  4. 4.Data Science InstituteImperial College LondonLondonUK

Personalised recommendations