Hardware Accelerator to Compute the Minimum Embedding Dimension of ECG Records

  • Pablo Pérez-Tirador
  • Gabriel Caffarena
  • Constantino A. García
  • Abraham Otero
  • Rafael Raya
  • Rodrigo Garcia-Carmona
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9656)

Abstract

In this paper, a parallel hardware implementation to accelerate the computation of the minimum embedding dimension is presented. The estimation of the minimum embedding dimension is a time-consuming task necessary to start the non-linear analysis of biomedical signals. The design presented has as main goals maximum performance and reconfigurability. The design process is explained, giving details on the decisions taken to achieve massive parallelization, as well as the methodology used to reduce hardware usage while keeping a high mathematical accuracy. The results yield that hardware acceleration achieves a speedup of three orders of magnitude in comparison to a purely software approach.

References

  1. 1.
    Voss, A., Schulz, S., Schroeder, R., Baumert, M., Caminal, P.: Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1887), 277–296 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Foj, O., Holcik, J.: Applying nonlinear dynamics to ECG signal processing. IEEE Eng. Med. Biol. Mag. 17(2), 96–101 (1998)CrossRefGoogle Scholar
  3. 3.
    Kantz, H., Schreiber, T.: Human ECG: nonlinear deterministic versus stochastic aspects. In: IEE Proceedings- Science, Measurement and Technology, vol. 145, pp. 279–284. IET (1998)Google Scholar
  4. 4.
    Govindan, R., Narayanan, K., Gopinathan, M.: On the evidence of deterministic chaos in ECG: surrogate and predictability analysis. Chaos: Interdis. J. Nonlinear Sci. 8(2), 495–502 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110(1–2), 43–50 (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34(3), 2427 (1986)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Kilts, S.: Advanced FPGA Design: Architecture, Implementation, and Optimization. Wiley-IEEE Press, New Jersey (2007)CrossRefGoogle Scholar
  9. 9.
    Perc, M.: Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys. 26(5), 757 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pereda, E., Gonzalez, J., Bhattacharya, J., Rial, R.: Nonlinear Analysis of Biomedical Data. University of La Laguna Press, Tenerife (2010)Google Scholar
  11. 11.
    Babloyantz, A.: Evidence of chaotic dynamics of brain activity during the sleep cycle. In: Mayer-Kress, G. (ed.) Dimensions and Entropies in Chaotic Systems. Springer Series in Synergetics, pp. 241–245. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  12. 12.
    Pradhan, N., Dutt, D.N.: A nonlinear perspective in understanding the neurodynamics of EEG. Comput. Biol. Med. 23(6), 425–442 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo Pérez-Tirador
    • 1
  • Gabriel Caffarena
    • 2
  • Constantino A. García
    • 3
  • Abraham Otero
    • 2
  • Rafael Raya
    • 2
  • Rodrigo Garcia-Carmona
    • 2
  1. 1.Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
  2. 2.University CEU-San PabloMadridSpain
  3. 3.Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations