Skip to main content

Skarn to Porphyry-Epithermal Transition in the Ouixane Fe District, Northeast Morocco: Interplay of Meteoric Water and Magmatic-Hydrothermal Fluids

  • Chapter
  • First Online:
Mineral Deposits of North Africa

Part of the book series: Mineral Resource Reviews ((MIRERE))

  • 1789 Accesses

Abstract

The Ouixane Fe skarn district in the northeastern Alpine Rifan belt is the highest grade iron district in Morocco with past production of 65 Mt of ore at >50 % Fe and estimated remaining reserves of 30 Mt grading 58 % Fe. Overall, the district consists of three major deposits, distributed in a 6 × 6 km zone along the northeastern part of the Beni Bou Ifrour Massif. Mineralization occurs either within the 7.58 ± 0.03 Ma Ouixane post-collisional, hornblende-biotite quartz-diorite porphyry and related dike swarms, or more importantly at contacts of the porphyry with a ~1,500-m-thick sequence of Upper Jurassic-Lower Cretaceous turbiditic and volcaniclastic sedimentary rocks. Igneous rocks have high-K, calc-alkaline to shoshonitic affinities and REE patterns that are consistent with emplacement in a typical arc setting. Concordance between the age of mineralization, which is thought to have occurred at 7.04 ± 0.47 Ma, and the 7.58 ± 0.03 Ma crystallization age of the Ouixane quartz-diorite porphyry constitutes strong evidence for a genetic relationship between Ouixane magnetite skarn mineralization and Late Neogene magmatism. Structural controls were important in focusing fluids and localizing the emplacement of late mineralizing phases. The ore zones have undergone strong post-ore displacement along steeply dipping, predominantly thrust faults, with significant remobilization of ore. Initial skarn formation started with isochemical reconversion of the hot rocks to marbles and hornfels and evolved through time into metasomatic replacements of carbonate precursors by calc-silicate, oxide, and sulphide minerals. High-temperature, early prograde mineral assemblages are dominated by pyroxene (Di95Hd5–Di46Hd53; max johannsenite content of 3 mol%) and garnet (Ad98Gr2–Ad40Gr60), with minor magnetite, K-feldspar, plagioclase, titanite, and scapolite. Low-temperature hydrous retrograde assemblages formed by nearly the complete replacement of the preexisting anhydrous skarn assemblage involve various proportions of amphibole, biotite, chlorite, epidote, quartz, calcite, barite, and sulphides. High Fe grades are spatially related to retrograde skarn zones that developed from carbonate precursors. A later potassic ± phyllic ± propylitic alteration overprints the calc-silicate mineral assemblages. The resulting alteration halos are spatially associated with porphyry-type and epithermal-style mineralization. The skarn mineral compositions indicate emplacement under high f O2 conditions that shifted through time to a reduced environment. Such an evolutionary trend may record the temporal decrease of f O2 and corresponding increase of pH and fS2. Epithermal sulphide-rich mineralization occurred at progressively lower pressures, shallower depths, and lower temperatures, relative to iron-rich skarn mineralization. Indeed, fluid inclusion data together with oxygen isotopic compositions are consistent with the involvement of early high-temperature (347–600 °C), low CO2 (<0.05 mol%), NaCl–KCl boiled magmatic brines, that mixed outward with increasing components of cooler (300–125 °C) and dilute (up to 7 wt% NaCl equiv) fluids probably of meteoric origin, which re-equilibrated with the early magmatic fluids. Late epithermal sulphide-rich veins formed at temperatures of 250–125 °C and pressures of <100 bars, corresponding to shallow depths of «1 km. The shift from oxidized to reduced fluid conditions is attributed to a transition in magma evolution from high-K calc-alkaline to shoshonitic compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1985) Les gisements de fer du Rif Oriental (Nador): synthèse géologique et évaluation des réserves. Société d’exploitation mines du Rif (SEFERIF), Rabat, 69 pp

    Google Scholar 

  • Bodnar RJ (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, fluids and ore deposits. Mineralogical Association of Canada, short course series, vol 23, pp 139–152

    Google Scholar 

  • Bouabdellah M, Lebret N, Marcoux E, Sadequi M (2012) Les mines des Beni Bou Ifrour-Ouixane (Rif Oriental): un district ferrugineux néogène de type skarn. Nouveaux guides géologiques miniers Maroc, Notes Mémoires Service Géologique Maroc 9:357–362

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Chen H, Clark AH, Kyser TK (2010) The Marcona magnetite deposit, Ica, south-central Peru: a product of hydrous, iron oxide-rich melts. Econ Geol 105:1441–1456

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol Rev 24:315–370

    Article  Google Scholar 

  • Comas MC, Platt JP, Soto JI, Watts AB (1999) The origin and tectonic history of the Alboran basin. Proc Ocean Drill Program, Sci Results 161:555–580

    Google Scholar 

  • Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A, Cotton J, Coutelle A, Hermitte D (2002) Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62:87–110

    Article  Google Scholar 

  • Crawford LM (1981) Phase equilibria in aqueous fluid inclusions. In: Hollister LS, Crawford ML (eds) Fluid inclusions: applications to petrology. Mineral Association Canada, short course handbook, vol 6, pp 75–100

    Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and NaCl-CaCl2-H2O. Geochim Cosmochim Acta 54:591–601

    Article  Google Scholar 

  • Delizaur J (1952) Gîtes de fer des Kelaia. XIX Congr Géol Inter, Alger, Livret-guide 7, série Maroc, pp 24–27

    Google Scholar 

  • Duflot H, Jezequel P, Roman Bernal A (1984) Le gisement de fer de Nador (zone rifaine, Maroc): nouvelles observations géologiques. Unpubl Rept, Sec d’études géologiques et minières, option géologie minière, Ecole Mines de Paris, France, 101 pp

    Google Scholar 

  • Duggen S, Hoernle K, Van Den Bogaard P, Garbe-Schönberg D (2005) Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46:1155–1201

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46:319–335

    Article  Google Scholar 

  • Einaudi MT (1982) Descriptions of skarns associated with porphyry copper plutons. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, southwestern North America. University Arizona Press, Tucson, pp 139–183

    Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Economic Geology 75th Anniversary Volume, pp 317–391

    Google Scholar 

  • EL Bakkali S, Gourgaud A, Bourdier JL, Bellon H, Gundogdu N (1998) Post-collision Neogene volcanism of the eastern Rif (Morocco): magmatic evolution through time. Lithos 45:523–543

    Google Scholar 

  • EL Rhazi M, Hayashi K (2002) Mineralogy, geochemistry, and age constraints on the Beni Bou Ifrour skarn type magnetite deposit, northeastern Morocco. Resour Geol 52:25–39

    Google Scholar 

  • Forster DB, Seccombe PK, Phillips D (2004) Control on skarn mineralization and alteration at the Acadia deposits, New South Wales, Australia. Econ Geol 99:761–788

    Article  Google Scholar 

  • Frizon de Lamotte D (1982) Contribution à l’étude de l’évolution structurale du Rif Oriental (Maroc). Notes Mémoires Service Géologique Maroc 314:241–304

    Google Scholar 

  • Gutscher MA, Malod J, Rehault J-P, Contrucci I, Klingelhoefer F, Mendes-Victor L, Spakman W (2002) Evidence for active subduction beneath Gibraltar. Geology 30:1071–1074

    Article  Google Scholar 

  • Heim A (1934) The iron ores of minas del Rif, Spanish Morocco. Econ Geol 29:294–300

    Article  Google Scholar 

  • Hernandez J, Bellon H (1985) Chronologie K-Ar du volcanisme miocène du Rif oriental (Maroc): implications tectoniques et magmatologiques. Revue Géologie Dynamique Géograph Physique 26(2):85–94

    Google Scholar 

  • Jabrane R (1993) Etudes génétiques de la minéralisation en fer de Nador (Maroc nord oriental). Unpublished Ph.D. Thesis, Université Libre Bruxelles, Belgium, 566 pp

    Google Scholar 

  • Jeannette A (1961) Les ressources minérales du Rif nord-oriental. Mines Géologie 14:17–45

    Google Scholar 

  • Jeannette A, Hamel C (1961) Présentation géologique et structurale du Rif Oriental. Mines Géologie 14:7–16

    Google Scholar 

  • Kerchaoui S (1985) Etude géologique et structurale du massif des Beni Bou Ifrour (Rif oriental, Maroc). Unpublished Ph.D. Thesis, Université Paris XI, Paris, 193 pp

    Google Scholar 

  • Kerchaoui S (1994) Pétrologie, géochimie et âges des roches magmatiques, leur place dans l’évolution structurale du massif des Beni Bou Ifrour et du Rif oriental, Maroc. Unpublished Ph.D. Thesis, Université Laval, Québec, Canada, 296 pp

    Google Scholar 

  • Koděra P, Rankin AH, Lexa J (1998) Evolution of fluids responsible for iron skarn mineralisation: an example from the Vyhne-Klokoč deposit, western Carpathians, Slovakia. Mineral Petrol 64:119–147

    Article  Google Scholar 

  • Kwak TAP (1986) Fluid inclusions in skarns (carbonate replacement deposits). J Metamorph Geol 4:363–384

    Article  Google Scholar 

  • Kwak TAP (1994) Hydrothermal alteration in carbonate replacement deposits. Geol Assoc Canada, Short Course Notes 11:381–402

    Google Scholar 

  • Kwak TAP, Tan TH (1981) The importance of CaCl2 in fluid composition trends—evidence from the King Island (Dolphin) skarn deposit. Econ Geol 76:955–960

    Article  Google Scholar 

  • Lai J, Chi G, Peng S, Shao Y, Yang B (2007) Fluid evolution in the formation of the Fenghuangshan Cu-Fe-Au deposit, Tongling, Anhui, China. Econ Geol 102:949–970

    Article  Google Scholar 

  • Lebret N (2014) Contexte structural et métallogénique des skarns à magnetite des Beni Bou Ifrour (Rif Oriental, Maroc): apports à l’évolution géodynamique de la Méditerranée occidentale. Unpublished Ph.D. Thesis, Université d’Orléans, France, 477 pp

    Google Scholar 

  • Liou JG (1973) Synthesis and stability relations of epidote Ca2Al2FeSi3O12(OH). J Petrol 14:381–413

    Article  Google Scholar 

  • Meinert LD (1998) Skarns and skarn deposits. Geosci Canada 19:145–162

    Google Scholar 

  • Naslund HR, Henriquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magnetic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Porter Geoscience Consultancy Publishing, Adelaide, vol 2, pp 207–228

    Google Scholar 

  • Palinkaš SS, Palinkaš LA, Renac C, Spangenberg JE, Lüders V, Molnar F, Maliqi G (2013) Metallogenic model of the Trepcă Pb-Zn-Ag skarn deposit, Kosovo: evidence from fluid inclusions, rare earth elements, and stable isotope data. Econ Geol 108:135–162

    Google Scholar 

  • Pan Y (1998) Scapolite in skarn deposits: petrological and geochemical significance. In: Lentz DR (ed) Mineralized intrusion-related skarn systems. Mineralogical Association of Canada, Short Course Series, vol 26, pp 169–209

    Google Scholar 

  • Platt JP, Whitehouse MJ, Kelly SP, Carter A, Hollick L (2003) Simultaneous extension exhumation across the Alboran basin: implications for the causes of late orogenic extension. Geology 31:251–254

    Article  Google Scholar 

  • Rhoden HN, Ereno J (1962) Magnetite ores of northern Morocco. Inst Min Metall Trans 71:B629–B661

    Google Scholar 

  • Richards JP (1995) Alkalic-type epithermal gold deposits—a review. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineralogical Association of Canada, short course series, vol 23, pp 367–400

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12: 644

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie and Son, London 235 pp

    Google Scholar 

  • Sillitoe RH (1993) Epithermal models: genetic types, geometrical controls and shallow features. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit modeling. Geological Association of Canada. Special paper, vol 40, pp 403–417

    Google Scholar 

  • Soloviev SG (2011) Geology, mineralization, fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkali porphyry deposit, Tien Shan, Kyrgyzstan. Econ Geol 106:193–222

    Article  Google Scholar 

  • Taylor HP Jr (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 229–302

    Google Scholar 

  • Viland JC (1977) Les roches éruptives et métamorphiques associées, d’âge néogène, de la zone nord des Beni Bou Ifrour. Notes Mémoires Service Géologique Maroc 37(267):27–84

    Google Scholar 

  • Zhu JJ, Hu R, Richards JR, Bi X, Zhong H (2015) Genesis and magmatic-hydrothermal evolution of the Yangla skarn Cu deposit, southwest China. Econ Geol 110:631–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bouabdellah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouabdellah, M., Jabrane, R., Margoum, D., Sadequi, M. (2016). Skarn to Porphyry-Epithermal Transition in the Ouixane Fe District, Northeast Morocco: Interplay of Meteoric Water and Magmatic-Hydrothermal Fluids. In: Bouabdellah, M., Slack, J. (eds) Mineral Deposits of North Africa. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-31733-5_7

Download citation

Publish with us

Policies and ethics