Advertisement

Linear Massless/Massive Gauge Theories

  • Ermis MitsouEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we propose to study the massive and massless theories of spin-1 and spin-2 fields through several approaches, each one of them providing a complementary viewpoint. As already mentioned in the introduction, the notions of degree of freedom and of dynamical field are not equivalent in non-local field theory. It is therefore important to first understand their equivalence in local field theory, and especially gauge theory, where not all fields propagate. We will thus see, in many different ways, how the field content splits into dynamical and non-dynamical fields and how this is related to the degrees of freedom of the theory.

References

  1. 1.
    M. Jaccard, M. Maggiore, E. Mitsou, Phys. Rev. D 88, 4, 044033 (2013). arXiv:1305.3034
  2. 2.
    M. Jaccard, M. Maggiore, E. Mitsou, Phys. Rev. D 87, 4, 044017 (2013). arXiv:1211.1562
  3. 3.
    A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009). arXiv:0811.2197
  4. 4.
    K. Hinterbichler, arXiv:1105.3735
  5. 5.
    K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    D.G. Boulware, S. Deser, Phys. Rev. D 6, 3368 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    S.F. Hassan, R.A. Rosen, Phys. Rev. Lett. 108, 041101 (2012). arXiv:1106.3344
  8. 8.
    S.F. Hassan, R.A. Rosen, JHEP 1204, 123 (2012). arXiv:1111.2070
  9. 9.
    M. Henneaux, C. Teitelboim, Quantization of gauge systems (Princeton University Press, Princeton, 1992)zbMATHGoogle Scholar
  10. 10.
    J.M. Bardeen, Phys. Rev. D 22, 1882 (1980)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Deser, J. Trubatch, S. Trubatch, Can. J. Phys. 44, 1715 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    S. Deser, A. Waldron, Phys. Rev. D 74, 084036 (2006). arXiv:hep-th/0609113
  13. 13.
    K. Hinterbichler, arXiv:1409.3565
  14. 14.
    S. Deser, A. Waldron, Phys. Lett. B 508, 347 (2001). arXiv:hep-th/0103255
  15. 15.
    A. Higuchi, Nucl. Phys. B 282, 397 (1987)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E.C.G. Stueckelberg, Helv. Phys. Acta 30, 209 (1957)MathSciNetGoogle Scholar
  17. 17.
    G. Dvali, New J. Phys. 8, 326 (2006). arXiv:hep-th/06100134 Google Scholar
  18. 18.
    G. Dvali, S. Hofmann, J. Khoury, Phys. Rev. D 76, 084006 (2007). arXiv:hep-th/0703027

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics, Institute for Strings, Cosmology and Astroparticle PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations